By visiting this site, you accept the use of cookies. More about our cookie policy.

GOST 22974.1-96

GOST R ISO 15353-2014 GOST P 55080-2012 GOST R ISO 16962-2012 GOST R ISO 10153-2011 GOST R ISO 10280-2010 GOST R ISO 4940-2010 GOST R ISO 4943-2010 GOST R ISO 14284-2009 GOST R ISO 9686-2009 GOST R ISO 13899-2-2009 GOST 18895-97 GOST 12361-2002 GOST 12359-99 GOST 12358-2002 GOST 12351-2003 GOST 12345-2001 GOST 12344-88 GOST 12350-78 GOST 12354-81 GOST 12346-78 GOST 12353-78 GOST 12348-78 GOST 12363-79 GOST 12360-82 GOST 17051-82 GOST 12349-83 GOST 12357-84 GOST 12365-84 GOST 12364-84 STATE STANDARD P 51576-2000 GOST 29117-91 GOST 12347-77 GOST 12355-78 GOST 12362-79 GOST 12352-81 GOST P 50424-92 STATE STANDARD P 51056-97 GOST P 51927-2002 GOST P 51928-2002 GOST 12356-81 GOST R ISO 13898-1-2006 GOST R ISO 13898-3-2007 GOST R ISO 13898-4-2007 GOST R ISO 13898-2-2006 STATE STANDARD P 52521-2006 GOST P 52519-2006 GOST R 52520-2006 GOST P 52518-2006 GOST 1429.14-2004 GOST 24903-81 GOST 22662-77 GOST 6012-2011 GOST 25283-93 GOST 18318-94 GOST 29006-91 GOST 16412.4-91 GOST 16412.7-91 GOST 25280-90 GOST 2171-90 GOST 23401-90 GOST 30642-99 GOST 25698-98 GOST 30550-98 GOST 18898-89 GOST 26849-86 GOST 26876-86 GOST 26239.5-84 GOST 26239.7-84 GOST 26239.3-84 GOST 25599.4-83 GOST 12226-80 GOST 23402-78 GOST 1429.9-77 GOST 1429.3-77 GOST 1429.5-77 GOST 19014.3-73 GOST 19014.1-73 GOST 17235-71 GOST 16412.5-91 GOST 29012-91 GOST 26528-98 GOST 18897-98 GOST 26529-85 GOST 26614-85 GOST 26239.2-84 GOST 26239.0-84 GOST 26239.8-84 GOST 25947-83 GOST 25599.3-83 GOST 22864-83 GOST 25599.1-83 GOST 25849-83 GOST 25281-82 GOST 22397-77 GOST 1429.11-77 GOST 1429.1-77 GOST 1429.13-77 GOST 1429.7-77 GOST 1429.0-77 GOST 20018-74 GOST 18317-94 STATE STANDARD P 52950-2008 GOST P 52951-2008 GOST 32597-2013 GOST P 56307-2014 GOST 33731-2016 GOST 3845-2017 STATE STANDARD P ISO 17640-2016 GOST 33368-2015 GOST 10692-2015 GOST P 55934-2013 GOST P 55435-2013 STATE STANDARD P 54907-2012 GOST 3845-75 GOST 11706-78 GOST 12501-67 GOST 8695-75 GOST 17410-78 GOST 19040-81 GOST 27450-87 GOST 28800-90 GOST 3728-78 GOST 30432-96 GOST 8694-75 GOST R ISO 10543-99 GOST R ISO 10124-99 GOST R ISO 10332-99 GOST 10692-80 GOST R ISO 17637-2014 GOST P 56143-2014 GOST R ISO 16918-1-2013 GOST R ISO 14250-2013 GOST P 55724-2013 GOST R ISO 22826-2012 GOST P 55143-2012 GOST P 55142-2012 GOST R ISO 17642-2-2012 GOST R ISO 17641-2-2012 GOST P 54566-2011 GOST 26877-2008 GOST R ISO 17641-1-2011 GOST R ISO 9016-2011 GOST R ISO 17642-1-2011 STATE STANDARD P 54790-2011 GOST P 54569-2011 GOST P 54570-2011 STATE STANDARD P 54153-2010 GOST R ISO 5178-2010 GOST R ISO 15792-2-2010 GOST R ISO 15792-3-2010 GOST P 53845-2010 GOST R ISO 4967-2009 GOST 6032-89 GOST 6032-2003 GOST 7566-94 GOST 27809-95 GOST 22974.9-96 GOST 22974.8-96 GOST 22974.7-96 GOST 22974.6-96 GOST 22974.5-96 GOST 22974.4-96 GOST 22974.3-96 GOST 22974.2-96 GOST 22974.1-96 GOST 22974.13-96 GOST 22974.12-96 GOST 22974.11-96 GOST 22974.10-96 GOST 22974.0-96 GOST 21639.9-93 GOST 21639.8-93 GOST 21639.7-93 GOST 21639.6-93 GOST 21639.5-93 GOST 21639.4-93 GOST 21639.3-93 GOST 21639.2-93 GOST 21639.0-93 GOST 12502-67 GOST 11878-66 GOST 1763-68 GOST 13585-68 GOST 16971-71 GOST 21639.10-76 GOST 2604.1-77 GOST 11930.7-79 GOST 23870-79 GOST 11930.12-79 GOST 24167-80 GOST 25536-82 GOST 22536.2-87 GOST 22536.11-87 GOST 22536.6-88 GOST 22536.10-88 GOST 17745-90 GOST 26877-91 GOST 8233-56 GOST 1778-70 GOST 10243-75 GOST 20487-75 GOST 12503-75 GOST 21548-76 GOST 21639.11-76 GOST 2604.8-77 GOST 23055-78 GOST 23046-78 GOST 11930.11-79 GOST 11930.1-79 GOST 11930.10-79 GOST 24715-81 GOST 5639-82 GOST 25225-82 GOST 2604.11-85 GOST 2604.4-87 GOST 22536.5-87 GOST 22536.7-88 GOST 6130-71 GOST 23240-78 GOST 3242-79 GOST 11930.3-79 GOST 11930.5-79 GOST 11930.9-79 GOST 11930.2-79 GOST 11930.0-79 GOST 23904-79 GOST 11930.6-79 GOST 7565-81 GOST 7122-81 GOST 2604.3-83 GOST 2604.5-84 GOST 26389-84 GOST 2604.7-84 GOST 28830-90 GOST 21639.1-90 GOST 5640-68 GOST 5657-69 GOST 20485-75 GOST 21549-76 GOST 21547-76 GOST 2604.6-77 GOST 22838-77 GOST 2604.10-77 GOST 11930.4-79 GOST 11930.8-79 GOST 2604.9-83 GOST 26388-84 GOST 14782-86 GOST 2604.2-86 GOST 21639.12-87 GOST 22536.8-87 GOST 22536.0-87 GOST 22536.3-88 GOST 22536.12-88 GOST 22536.9-88 GOST 22536.14-88 GOST 22536.4-88 GOST 22974.14-90 GOST 23338-91 GOST 2604.13-82 GOST 2604.14-82 GOST 22536.1-88 GOST 28277-89 GOST 16773-2003 GOST 7512-82 GOST 6996-66 GOST 12635-67 GOST 12637-67 GOST 12636-67 GOST 24648-90

GOST 22974.1−96 fused welding Fluxes. Methods of flux decomposition


GOST 22974.1−96

Group B09


INTERSTATE STANDARD

FUSED WELDING FLUXES

Methods of flux decomposition

Melted welding fluxes. Methods of flux decomposition


ISS 77.040
AXTU 0809

Date of implementation 2000−01−01


Preface

1 DEVELOPED by the Interstate technical Committee for standardization MTK 72; the Institute of electric them. E. O. Paton of NAS of Ukraine

SUBMITTED to the State Committee of Ukraine for standardization, Metrology and certification

2 ADOPTED by the Interstate Council for standardization, Metrology and certification (Protocol No. 9 dated April 12, 1996)

The adoption voted:

   
The name of the state
The name of the national authority for standardization
The Republic Of Azerbaijan
Azgosstandart
The Republic Of Belarus
Gosstandart Of Belarus
The Republic Of Kazakhstan
Gosstandart Of The Republic Of Kazakhstan
Russian Federation
Gosstandart Of Russia
The Republic Of Tajikistan
Tajikistandart
Turkmenistan
The main state inspection of Turkmenistan
The Republic Of Uzbekistan
Standards
Ukraine
Gosstandart Of Ukraine

3 Resolution of the State Committee of the Russian Federation for standardization and Metrology, dated April 21, 1999 N 134 inter-state standard GOST 22974.1−96 introduced directly as state standard of the Russian Federation from January 1, 2000

4 REPLACE GOST 22974.1−85

1 Scope


This standard specifies the methods of decomposition fluxes: the smelting and acid (for determination of mass fraction of manganese oxide (II), aluminum oxide, calcium oxide, magnesium oxide, iron (III) oxide, of phosphorus, of zirconium oxide and titanium oxide (IV).

2 Normative references


The present standard features references to the following standards:

GOST 3118−77 hydrochloric Acid. Specifications

GOST 4199−76 Sodium tetraborate 10-aqueous. Specifications

GOST 4204−77 sulfuric Acid. Specifications

GOST 4332−76 Potassium carbonate — sodium carbonate. Specifications

GOST 4461−77 nitric Acid. Specifications

GOST 7172−76 Potassium preservatory. Specifications

GOST 9656−75 boric Acid. Specifications

GOST 10484−78 hydrofluoric Acid. Specifications

GOST 11293−89 Gelatin food. Specifications

GOST 22974.0−96 fused welding Fluxes. General requirements for methods of analysis

3 General requirements


General requirements for methods of analysis GOST 22974.0.

4 the Method of decomposition fluxes by melting

4.1 the essence of the method

The method is based on the fusion of the flux linkage with a mixture of potassium carbonate — sodium carbonate and sodium tetraborate or boric acid, dissolving the melt in hydrochloric acid and separation of the formed silicic acid with gelatin.

4.2 Reagents and solutions

Sulfuric acid according to GOST 4204, diluted 1:1.

Hydrochloric acid according to GOST 3118, diluted 1:1 and 5:95.

Hydrofluoric acid according to GOST 10484.

Boric acid according to GOST 9656.

Potassium carbonate — sodium carbonate according to GOST 4332.

Potassium preservatory according to GOST 7172.

Sodium tetraborate 10-water according to GOST 4199 dehydrated: sodium tetraborate was placed in a platinum Cup in a muffle furnace slowly heated to 400−450 °C. Then the porous mass after cooling is ground and placed in a jar with a glass stopper.

Gelatin food according to GOST 11293, solution mass concentration of 0.01 g/cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсов.

The beach: mix five parts by weight of potassium carbonate — sodium carbonate and one part by weight of sodium tetraborate or boric acid.

4.3 Decomposition of the flux melting

4.3.1 the Linkage of flux with a mass of 0.5 g is fused with 6 g of flux in a platinum crucible with lid at a temperature of 950−1050 °C for 30 min. the Melt was poured on a polished plate of stainless steel. Crucible, cover and melt is placed in a beaker with a capacity of 300−400 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовand decompose in 50 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof hydrochloric acid (1:1), covered with a glass glass. Out from a glass crucible and cover them thoroughly rinsed with water.

The resulting solution was evaporated before the salt extraction, is poured 10 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof the gelatin solution and diluted to a volume of 50 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсов.

The solution is stirred for 3−5 min with a glass rod and leave in a warm place at a temperature of 50−70 °C for 10−15 min.

The precipitate of silicic acid is filtered off, the filter «white ribbon», washed several times with hot hydrochloric acid (5:95) and several times with hot water (stock solution).

The sediment filter is placed in a platinum crucible, dried and calcined for 15−20 minutes at a temperature of 950−1050 °C. To the cooled crucible, add 5−10 drops of sulfuric acid (1:1), 5−8 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовhydrofluoric acid and evaporated to dryness. The dry residue is calcined at a temperature of 950−1050 °C for 3−5 min. the Residue in the crucible is fused with 2 g of potassium peacemaking at a temperature of 700−750 °C for 3−5 min. M dissolved in 5−10 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof hydrochloric acid (1:1) and added to the main solution. The solution was transferred to a volumetric flask with a capacity of 250 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof water and bring to mark. The solution is used for determining manganese oxide (II), iron (III) oxide, aluminum oxide, calcium oxide, magnesium oxide, zirconium oxide, titanium oxide (IV), and phosphorus.

5 the Method of acid decomposition fluxes

5.1 the essence of the method

The method is based on decomposition of fluxes in mixtures of perchloric or sulfuric, nitric and hydrofluoric acid in the removal of silicon in the form of crematoria.

5.2 Reagents and solutions

Nitric acid according to GOST 4461.

Sulfuric acid according to GOST 4204, diluted 1:1.

Hydrochloric acid according to GOST 3118, diluted 1:1.

Hydrofluoric acid according to GOST 10484.

Chloric acid, diluted 1:1.

Boric acid according to GOST 9656.

Acid chloride, saturated boric acid: 57% perchloric acid (1:1) or undiluted 36% is heated to 50−60 °C and saturated with boric acid.

Potassium preservatory according to GOST 7172.

5.3 Decomposition of the flux of perchloric acid

5.3.1 Weighed flux weighing 0.5 g is placed in a platinum Cup, moisten with water, add 30 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof perchloric acid (1:1), 5 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовnitrogen and 10 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовhydrofluoric acids and evaporated to copious fumes of perchloric acid.

Wash with water the walls of the Cup, pour 10−20 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof perchloric acid saturated with boric acid, and evaporated to dryness. The dry residue is calcined for 2−3 minutes at a temperature of 750−800 °C.

Calcined residue is fused with 4−5 g peacemaking potassium at a temperature of 750−800 °C for 3−5 min. M leached at 50 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовhydrochloric acid (1:1) under heating. The contents of the Cup is transferred to a volumetric flask with a capacity of 250 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof water and bring to mark.

The solution is used for determining manganese oxide (II), iron (III) oxide, aluminum oxide, calcium oxide, magnesium oxide, zirconium oxide, titanium oxide (IV), and phosphorus.

5.4 Decomposition of the flux of sulfuric acid

5.4.1 the Linkage of flux with a mass of 0.5 g was placed in a platinum Cup, moisten with water, add 20 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовhydrofluoric acid, 10 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof sulphuric acid (1:1). The contents of the Cup is heated to a decomposition of the sample, pour 5 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof nitric acid and evaporated until the termination of allocation of steams of sulfuric acid. Residual sulfuric acid was removed, holding the Cup in a muffle at a temperature of 950−1050 °C for 2−3 min. a Cup of cooled, poured 50−60 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof hydrochloric acid (1:1) and heated to dissolve the salts. If the bottom of the Cup will stay intact particles flux, their filtered off and fused with potassium pyroterrorism on 4.3.1. The solution was transferred to a volumetric flask with a capacity of 250 cmГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсовof water and bring to mark.

The solution is used for determining manganese oxide (II), iron (III) oxide, aluminum oxide, calcium oxide, magnesium oxide, phosphorus.