By visiting this site, you accept the use of cookies. More about our cookie policy.

GOST 17745-90

GOST R ISO 15353-2014 GOST P 55080-2012 GOST R ISO 16962-2012 GOST R ISO 10153-2011 GOST R ISO 10280-2010 GOST R ISO 4940-2010 GOST R ISO 4943-2010 GOST R ISO 14284-2009 GOST R ISO 9686-2009 GOST R ISO 13899-2-2009 GOST 18895-97 GOST 12361-2002 GOST 12359-99 GOST 12358-2002 GOST 12351-2003 GOST 12345-2001 GOST 12344-88 GOST 12350-78 GOST 12354-81 GOST 12346-78 GOST 12353-78 GOST 12348-78 GOST 12363-79 GOST 12360-82 GOST 17051-82 GOST 12349-83 GOST 12357-84 GOST 12365-84 GOST 12364-84 STATE STANDARD P 51576-2000 GOST 29117-91 GOST 12347-77 GOST 12355-78 GOST 12362-79 GOST 12352-81 GOST P 50424-92 STATE STANDARD P 51056-97 GOST P 51927-2002 GOST P 51928-2002 GOST 12356-81 GOST R ISO 13898-1-2006 GOST R ISO 13898-3-2007 GOST R ISO 13898-4-2007 GOST R ISO 13898-2-2006 STATE STANDARD P 52521-2006 GOST P 52519-2006 GOST R 52520-2006 GOST P 52518-2006 GOST 1429.14-2004 GOST 24903-81 GOST 22662-77 GOST 6012-2011 GOST 25283-93 GOST 18318-94 GOST 29006-91 GOST 16412.4-91 GOST 16412.7-91 GOST 25280-90 GOST 2171-90 GOST 23401-90 GOST 30642-99 GOST 25698-98 GOST 30550-98 GOST 18898-89 GOST 26849-86 GOST 26876-86 GOST 26239.5-84 GOST 26239.7-84 GOST 26239.3-84 GOST 25599.4-83 GOST 12226-80 GOST 23402-78 GOST 1429.9-77 GOST 1429.3-77 GOST 1429.5-77 GOST 19014.3-73 GOST 19014.1-73 GOST 17235-71 GOST 16412.5-91 GOST 29012-91 GOST 26528-98 GOST 18897-98 GOST 26529-85 GOST 26614-85 GOST 26239.2-84 GOST 26239.0-84 GOST 26239.8-84 GOST 25947-83 GOST 25599.3-83 GOST 22864-83 GOST 25599.1-83 GOST 25849-83 GOST 25281-82 GOST 22397-77 GOST 1429.11-77 GOST 1429.1-77 GOST 1429.13-77 GOST 1429.7-77 GOST 1429.0-77 GOST 20018-74 GOST 18317-94 STATE STANDARD P 52950-2008 GOST P 52951-2008 GOST 32597-2013 GOST P 56307-2014 GOST 33731-2016 GOST 3845-2017 STATE STANDARD P ISO 17640-2016 GOST 33368-2015 GOST 10692-2015 GOST P 55934-2013 GOST P 55435-2013 STATE STANDARD P 54907-2012 GOST 3845-75 GOST 11706-78 GOST 12501-67 GOST 8695-75 GOST 17410-78 GOST 19040-81 GOST 27450-87 GOST 28800-90 GOST 3728-78 GOST 30432-96 GOST 8694-75 GOST R ISO 10543-99 GOST R ISO 10124-99 GOST R ISO 10332-99 GOST 10692-80 GOST R ISO 17637-2014 GOST P 56143-2014 GOST R ISO 16918-1-2013 GOST R ISO 14250-2013 GOST P 55724-2013 GOST R ISO 22826-2012 GOST P 55143-2012 GOST P 55142-2012 GOST R ISO 17642-2-2012 GOST R ISO 17641-2-2012 GOST P 54566-2011 GOST 26877-2008 GOST R ISO 17641-1-2011 GOST R ISO 9016-2011 GOST R ISO 17642-1-2011 STATE STANDARD P 54790-2011 GOST P 54569-2011 GOST P 54570-2011 STATE STANDARD P 54153-2010 GOST R ISO 5178-2010 GOST R ISO 15792-2-2010 GOST R ISO 15792-3-2010 GOST P 53845-2010 GOST R ISO 4967-2009 GOST 6032-89 GOST 6032-2003 GOST 7566-94 GOST 27809-95 GOST 22974.9-96 GOST 22974.8-96 GOST 22974.7-96 GOST 22974.6-96 GOST 22974.5-96 GOST 22974.4-96 GOST 22974.3-96 GOST 22974.2-96 GOST 22974.1-96 GOST 22974.13-96 GOST 22974.12-96 GOST 22974.11-96 GOST 22974.10-96 GOST 22974.0-96 GOST 21639.9-93 GOST 21639.8-93 GOST 21639.7-93 GOST 21639.6-93 GOST 21639.5-93 GOST 21639.4-93 GOST 21639.3-93 GOST 21639.2-93 GOST 21639.0-93 GOST 12502-67 GOST 11878-66 GOST 1763-68 GOST 13585-68 GOST 16971-71 GOST 21639.10-76 GOST 2604.1-77 GOST 11930.7-79 GOST 23870-79 GOST 11930.12-79 GOST 24167-80 GOST 25536-82 GOST 22536.2-87 GOST 22536.11-87 GOST 22536.6-88 GOST 22536.10-88 GOST 17745-90 GOST 26877-91 GOST 8233-56 GOST 1778-70 GOST 10243-75 GOST 20487-75 GOST 12503-75 GOST 21548-76 GOST 21639.11-76 GOST 2604.8-77 GOST 23055-78 GOST 23046-78 GOST 11930.11-79 GOST 11930.1-79 GOST 11930.10-79 GOST 24715-81 GOST 5639-82 GOST 25225-82 GOST 2604.11-85 GOST 2604.4-87 GOST 22536.5-87 GOST 22536.7-88 GOST 6130-71 GOST 23240-78 GOST 3242-79 GOST 11930.3-79 GOST 11930.5-79 GOST 11930.9-79 GOST 11930.2-79 GOST 11930.0-79 GOST 23904-79 GOST 11930.6-79 GOST 7565-81 GOST 7122-81 GOST 2604.3-83 GOST 2604.5-84 GOST 26389-84 GOST 2604.7-84 GOST 28830-90 GOST 21639.1-90 GOST 5640-68 GOST 5657-69 GOST 20485-75 GOST 21549-76 GOST 21547-76 GOST 2604.6-77 GOST 22838-77 GOST 2604.10-77 GOST 11930.4-79 GOST 11930.8-79 GOST 2604.9-83 GOST 26388-84 GOST 14782-86 GOST 2604.2-86 GOST 21639.12-87 GOST 22536.8-87 GOST 22536.0-87 GOST 22536.3-88 GOST 22536.12-88 GOST 22536.9-88 GOST 22536.14-88 GOST 22536.4-88 GOST 22974.14-90 GOST 23338-91 GOST 2604.13-82 GOST 2604.14-82 GOST 22536.1-88 GOST 28277-89 GOST 16773-2003 GOST 7512-82 GOST 6996-66 GOST 12635-67 GOST 12637-67 GOST 12636-67 GOST 24648-90

GOST 17745−90 of Steel and alloys. Methods for the determination of gases


GOST 17745−90

Group B09


STATE STANDARD OF THE USSR

STEELS AND ALLOYS

Methods for the determination of gases

Steels and alloys. Methods for determination of gases


AXTU 0809

Valid from 01.07.91
before 01.07.96*
________________________________
* Expiration removed by Protocol No. 5−94
The interstate Council for standardization,
Metrology and certification (I & C N 11/12, 1994). -
Note the manufacturer’s database.



INFORMATION DATA

1. DEVELOPED AND INTRODUCED by the Ministry of metallurgy of the USSR

DEVELOPERS

V. P., Zamaraev, V. V. Pokidyshev, A. A. Ivanov, V. M., Skosyrev, V. T. Ababkov, A. A. Sakharnov, L. N. Dmitrov

2. APPROVED AND put INTO EFFECT by Decision of the USSR State Committee on management of quality and standards from 27.04.90 N 1048

3. REPLACE GOST 17745−72

4. REFERENCE NORMATIVE AND TECHNICAL DOCUMENTS

   
The designation of the reference document referenced
Item number
GOST 849−70
2.6
GOST 860−75
2.6
GOST 1012−72
2.6
GOST 3022−80
2.6
GOST 7565−81
1.2
GOST 9293−74
2.6
GOST 10157−79
2.6
GOST 11680−76
2.6
GOST 16539−79
2.6
GOST 18300−87
2.6
GOST 20288−74
2.6
GOST 28437−90
1.1



This standard specifies the method of reductive melting in a vacuum or in a stream of inert carrier gas to determine the oxygen (with mass fraction of from 0.0005 to 0.2%), nitrogen (in mass fraction from 0.0005% to 0.8%) and hydrogen (with mass fraction of 0.00005 to 0.01%) and the method of heating or melting under vacuum or in a stream of inert carrier gas to determine the hydrogen (with mass fraction of 0.00005 to 0.01%) in steels and alloys based on iron, Nickel, cobalt, iron-Nickel.

The method of reductive melting to determine the mass fraction of oxygen, nitrogen and hydrogen is based on the melting of the sample in a graphite crucible in a vacuum or in a stream of inert carrier gas, the extraction of the gases contained therein and subsequent analysis of oxygen, hydrogen and nitrogen in the extracted gas mixture by physical or physico-chemical methods.

A method of heating or melting to determine the mass fraction of hydrogen based on the heating or melting of the sample in a container of ceramic material in vacuum or in a stream of inert carrier gas, the extraction of hydrogen from a sample and determination of its physical or physico-chemical methods.

The method of reductive melting is used when disagreement in the evaluation of quality of steels and alloys.

Allowed by agreement of the parties to apply the methods for cast irons, ferro-alloys and alloys based on manganese.

1. GENERAL REQUIREMENTS

1.1. General requirements for methods of analysis GOST 28437.

1.2. Sampling for fabrication of specimens for analysis according to GOST 7565.

Allowed sampling using the quartz tube, the size of which provide dense samples without pores and shrinkage defects, and also special samplers. Cooling of the samples is carried out in air or in water.

2. APPARATUS, MATERIALS AND REAGENTS

2.1. For the determination of oxygen is a rapid analyzer of the type AK 7516 technical characteristics:

analysis time — 82;

maximum power — 11 kVA;

the flow rate of argon of 0.5 DMГОСТ 17745-90 Стали и сплавы. Методы определения газов/min;

sensing element — cell coulometric titration.

2.2. For determination of nitrogen applied Express-analyzer of the type AM 7514 technical characteristics:

the analysis period is not more than 120 s;

maximum power — 11 kVA;

the consumption of helium — 1.02 DMГОСТ 17745-90 Стали и сплавы. Методы определения газов/min;

the sensitive element of the detector of thermal conductivity.

2.3. For the determination of hydrogen used in the device type RH-2 of the firm «LECO» technical characteristics:

the gas flow rate is 0.26 and 0.30 DMГОСТ 17745-90 Стали и сплавы. Методы определения газов/min;

the analysis period is not more than 420;

maximum capacity of 4.5 kVA;

the sensitive element of the detector of thermal conductivity.

2.4. Flowchart of analysis for measuring the mass fraction of gas in the General form shown in Fig.

Block diagrams of devices for measuring the mass fraction of gases

ГОСТ 17745-90 Стали и сплавы. Методы определения газов


Block diagrams of devices for measuring the mass fraction of gases:

a method of melting (heating) the flow of inert carrier gas (1 — a source of inert carrier gas;
2 — reducer; 3 — extraction oven; 4 — reactivity; 5 — analytical unit;
6 — control unit; 7 — power supply furnace)
b — method of melting (heating) in vacuum (1 — forevacuum pump; 2 — extraction oven;
3 — gazosbrosnoe pump; 4 — reactivity; 5 — analytical unit; 6 — control unit;
7 — power supply furnace)


Allowed the use of other measuring instruments with the metrological characteristics are not worse than the above devices.

The list of devices given in the Appendix.

2.5. Scales for weighing of samples — all to ensure the required weighing accuracy, including automatic, which is equipped with instruments for gas analysis. Samples for analysis are weighed with the maximum permissible error not exceeding 0.001 g weight of the sample to 0.1 g and 0.002 g — weight of the samples over 0.1 g.

2.6. Materials

Helium gas with a purity not less than 99.99%.

Argon gas according to GOST 10157.

Nitrogen gas according to GOST 9293.

The hydrogen gas according to GOST 3022.

Carbon monoxide gas with a purity not less than 99.5%.

Carbon tetrachloride according to GOST 20288.

The technical rectified ethyl alcohol according to GOST 18300.

Ether sulfuric.

The aviation gasoline according to GOST 1012.

Angidro.

Askari.

Copper (II) oxide according to GOST 16539.

Phosphoric anhydride.

Nickel H1, H2 according to GOST 849*.
______________
* On the territory of the Russian Federation GOST 849−97. — Note the manufacturer’s database.

Tin 01, 02 GOST 860.

Cotton calico GOST 11680.

Graphite crucibles.

The use of other materials, including those supplied by the manufacturers of the instrument quality is not below specified in the standard.

3. PREPARATION FOR ASSAY

3.1. Sample preparation

3.1.1. Used for the analysis of compact samples with clean without tint surface, without pores, cavities and burrs treated cutting machines with a fine file (needle files) or with an abrasive that does not contain compounds analyzed (analyzed) gases.

When determining the mass fraction of nitrogen is allowed to use samples in the form of large chips.

In the manufacture of samples is not allowed the heating of the metal above 70 °C.

The mass of samples should amount to 0.05−2.0 g to determine the mass fraction of oxygen and nitrogen and 0.05−12.0 g, for determine the mass fraction of hydrogen.

3.1.2. For analysis made at least three compact designs.

3.1.3. Before analysis the samples are degreased by washing in alcohol (ether, aviation gasoline, or carbon tetrachloride). When determining the mass fraction of oxygen and nitrogen is allowed purification of samples before analysis of the physical or physico-chemical methods, including electrochemical polishing and etching in acid with ultrasound.

If you are using samples in the form of chips, that allowed analysis without washing.

3.2. Preparation of instruments for analysis

3.2.1. Preparation of instruments to be analyzed involves the heating of the device, the calibration of an instrument with standard samples or calibration gases, the definition of amendments the reference experiment.

3.2.2. When determining amendments the reference experiment perform the same operations as in the analysis of samples (see p.4.1), with the exception of loading samples into a ceramic container or a graphite crucible.

The definition of amendments the reference experiment carried out at least once per shift (preferably 10−15 analyses). If the analysis used different batches of ceramic containers or crucibles of graphite, the definition of amendments the reference experiment carried out before use each such party.

4. ANALYSIS

4.1. Analysis of samples includes mandatory steps: the installation of the crucible or ceramic container in a furnace, degassing of the crucible, heating the crucible to a predetermined temperature and holding at that temperature for a period of time, providing completeness of extraction sample gas (gases).

4.2. Recommended composition of unmarried baths and temperature tests for various classes of steels and alloys in determining the mass fraction of gases are given in table.1.

Table 1


Recommended operating conditions the analysis of gases in steels and alloys

       
The grade of steel (alloy)
The designated gas
The recommended composition of the blank bath
and the ratio of sample mass to the mass of blank bath
Recommended temperature analysis, °C
Low-carbon steel (semi-killed and boiling) Oxygen
Not required
Not less than 1800
  Nitrogen
  Not less than 1800
  Hydrogen
  Not less than 1600
Steel low-, medium-, and high-carbon (quiet, low alloy; alloys of iron, Nickel-iron, Nickel and cobalt-based, containing Al, Ti, Zr, Cr, Nb and other elements forming solid oxides and nitrides or sublimates having a high sorption activity in relation to the designated gas Oxygen
Not required
Not less than 1850
  Nitrogen
  Not less than 1850
  Hydrogen
  Not less than 1600
Medium alloy steel, high-alloy steels; iron alloys, iron-Nickel, manganese and cobalt bases containing Al, Ti, Zr, Cr, Nb and other elements that form solid oxides and nitrides and sublimates having a high sorption activity in relation to the designated gas Oxygen
Nickel+ (4−10%) of tin;
not more than 1:1 (for alloys not less than 1:5)
Not less than 1900
  Nitrogen
Nickel; not more than 1:1 (for alloys not less than 1:5)*
Not less than 1900
  Hydrogen
Tin; 1:3
Not less than 1850
High-alloy steels containing Mo, W, etc. refractory elements
Oxygen
Nickel+ (4−10%) of tin;
not less than 1:2**
Not less than 2000
  Nitrogen
Nickel; at least 1:2
Not less than 2000
  Hydrogen
Tin; 1:3
Not less than 1900

________________
* Allowed the use of other compositions blanks baths, providing completeness of extraction sample gas. In the analysis of materials not listed in the table, the temperature and other conditions of the analysis choose the best for these materials.

** Permitted additive in the graphite crucible fine in the amount not exceeding the mass of the analyzed sample.

5. PROCESSING OF THE RESULTS OF THE ANALYSIS

5.1. Mass fraction of gas (ГОСТ 17745-90 Стали и сплавы. Методы определения газов) in percent is calculated by the formula

ГОСТ 17745-90 Стали и сплавы. Методы определения газов,


where ГОСТ 17745-90 Стали и сплавы. Методы определения газовis the mass of gas detected by the instrument, µg;

ГОСТ 17745-90 Стали и сплавы. Методы определения газов — amendment of the control of experience, mcg;

ГОСТ 17745-90 Стали и сплавы. Методы определения газов — the mass of sample, g.

Allowed calculation of the results of measuring the mass fraction of gas carried on the formulas given in the reference document on the devices.

5.2. Norms of accuracy and norms of control of accuracy of measurement of mass fraction of gases and oxygen are given in table.2 and 3.

Table 2

                         
Mass fraction of gas, %

The error analysis results
ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

Permitted
the differences of two parallel definitions ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

Permitted
differences three parallel definitions ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

Permissible discrepancies
two results of the analysis
ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

Permissible discrepancies in the results of the analysis of a standard sample certified values
ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

Tripled average quadrati-
growth variance ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

  sour-
rod
nitrogen
sour-
rod
nitrogen
sour-
rod
nitrogen
sour-
rod
nitrogen
sour-
rod
nitrogen
sour-
rod
nitrogen
0,0005−0,001
0,0008
0,0008
0,0008
0,0008
0,0010
0,0010
0,0010
0,0010
0,0005
0,0005
0,0011
0,0011
0,001−0,002
0,0009
0,0009
0,0009
0,0009
0,0012
0,0012
0,0012
0,0012
About 0.0006
About 0.0006
0,0012
0,0012
0,002−0,005
0,0010
0.0016 inch
0,0011
0,0017
0,0013
0,0020
0,0013
0,0020
0,0007
0,0010
0,0014
0,0022
0,005−0,01
0,0018
0,0024
0,0018
0,0025
0,0023
0,0030
0,0023
0,0030
0,0012
0,0026
0,0025
0,0030
0,01−0,02
0,004
0,004
0,004
0,004
0,005
0,005
0,005
0,005
0,002
0,002
0,005
0,005
0,02−0,05
0,007
0,006
0,007
0,006
0,008
0,007
0,008
0,007
0,004
0,004
0,010
0,008
0,05−0,1
0,009
0,008
0,010
0,008
0,012
0,010
0,012
0,010
0,006
0,005
0,013
0,011
0,1−0,2
0,03
0,02
0,03
0,02
0,04
0,03
0,04
0,03
0,02
0,02
0,04
0,03
0,20−0,5
-
0,05
-
0,05
-
0,06
-
0,06
-
0,03
-
0,07
0,5−0,8
-
0,08
-
0,08
-
0,10
-
0,010
-
0,05
-
0,011



Table 3

             
Mass
share
hydrogen,
%

An error-
ness results
tats analysis
ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

Permitted
the differences of two parallel definitions ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

The allowable divergence of the three parallel definitions ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

The allowable discrepancy of the two results of the analysis
ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

Permissible discrepancies in the results of the analysis of the standard
tion of the sample
from the certified value ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

Tripling the standard deviation ГОСТ 17745-90 Стали и сплавы. Методы определения газов, %

0,00005−0,0001
0,00008
0,00008
0,00010
0,00010
0,00005
0,00011
0,0001−0,0003
0,00009
0,00010
0,00012
0,00012
Of 0.00006
0,00013
0,0003-about 0.0006
0,00014
0,00015
0,00018
0,00018
0,00009
0,00020
About 0.0006−0.001 in
0,00024
0,00025
0,0003
0,0003
0,00016
0,0003
0,001−0,002
0,0005
0,0005
About 0.0006
About 0.0006
0,0003
0,0007
0,002−0,004
0,0007
0,0007
0,0008
0,0008
0,0004
0,0009
0,004−0,010
0,0010
0,0010
0,0013
0,0012
About 0.0006
0,0014

5.3. If the discrepancy between the results of two parallel measurements is greater than the value ГОСТ 17745-90 Стали и сплавы. Методы определения газов, then perform the third dimension. If the difference is extreme results of the three measurements does not exceed the permissible value ГОСТ 17745-90 Стали и сплавы. Методы определения газовgiven in table.2 and 3, the result of the analysis is calculated as the arithmetic mean of results of three parallel measurements.

5.4. If the difference is extreme results of the three measurements exceeds the allowable value ГОСТ 17745-90 Стали и сплавы. Методы определения газов, and the divergence of two close measurements does not exceed ГОСТ 17745-90 Стали и сплавы. Методы определения газов, then calculate the arithmetic average of the two measurements ГОСТ 17745-90 Стали и сплавы. Методы определения газов. To ГОСТ 17745-90 Стали и сплавы. Методы определения газовfind the value of ГОСТ 17745-90 Стали и сплавы. Методы определения газов(table.2 and 3) and assess whether the result of the remaining measurements in the interval ГОСТ 17745-90 Стали и сплавы. Методы определения газовif he does not, the recognized penalty for the result of the analysis of the accepted value ГОСТ 17745-90 Стали и сплавы. Методы определения газов. If it does, then the result of the analysis recognize incorrect. The measurement or repeat or stop to ascertain and eliminate the causes of increased dispersion of measurement results.

By agreement of the parties in the absence of additional samples for repeat analysis allowed the result of the analysis to give the results of the three definitions.

6. CONTROL OF MEASUREMENT ACCURACY

6.1. Stability control calibration characteristics

6.1.1. Stability control calibration characteristics for the upper and lower limits of the measuring range is carried out at least once per shift by using standard samples or calibration gases.

You can control the stability of the calibration characteristics only for the upper bound or mid-range.

6.1.2. If the difference of values of two parallel measurements of the mass fraction of gas in the standard sample does not exceed ГОСТ 17745-90 Стали и сплавы. Методы определения газов, then calculate the arithmetic average of the ГОСТ 17745-90 Стали и сплавы. Методы определения газовmeasurement results and the difference between ГОСТ 17745-90 Стали и сплавы. Методы определения газовwhere the ГОСТ 17745-90 Стали и сплавы. Методы определения газовcertified value of the mass fraction of gas in the standard sample.

If the difference exceeds the parallel dimensions ГОСТ 17745-90 Стали и сплавы. Методы определения газов, the measurement is repeated in accordance with clause 5.3.

The stability of the calibration characteristics is considered satisfactory if ГОСТ 17745-90 Стали и сплавы. Методы определения газовnot exceed the permissible values ГОСТ 17745-90 Стали и сплавы. Методы определения газов(see table.2 and 3).

If ГОСТ 17745-90 Стали и сплавы. Методы определения газовexceeds ГОСТ 17745-90 Стали и сплавы. Методы определения газов, then carried out the calibration of an instrument in accordance with the instructions.

AI.

6.2. The control of correctness of analysis results

6.2.1. At least once per shift before the analyses carried out the verification of results by analysis of a standard sample with a certified mass fraction of the gas nearest to the interval of mass fraction of gas in the analyzed series of samples and similar type material.

Allowed to combine the control of the correctness of the measurement with stability control calibration characteristics.

6.2.2. If the difference of values of two parallel measurements of the mass fraction of gas in the standard sample does not exceed ГОСТ 17745-90 Стали и сплавы. Методы определения газов, calculate the arithmetic mean ГОСТ 17745-90 Стали и сплавы. Методы определения газовand the difference ГОСТ 17745-90 Стали и сплавы. Методы определения газов.

If the difference exceeds the parallel definitions ГОСТ 17745-90 Стали и сплавы. Методы определения газов, the definition is repeated in accordance with clause 5.3.

Measurement accuracy is considered satisfactory if ГОСТ 17745-90 Стали и сплавы. Методы определения газовnot exceed ГОСТ 17745-90 Стали и сплавы. Методы определения газов(see table.2 and 3).

If ГОСТ 17745-90 Стали и сплавы. Методы определения газовexceeds ГОСТ 17745-90 Стали и сплавы. Методы определения газов, then carried out the calibration of an instrument according to the instruction manual and the measurement repeated. If in this case ГОСТ 17745-90 Стали и сплавы. Методы определения газовexceeds ГОСТ 17745-90 Стали и сплавы. Методы определения газов, the measurement is stopped until the reasons causing the increased variance.

APPLICATION (reference). The list of devices for measuring the mass fraction of gases

APP
Reference



Table 4

     
The name of the device
The analyzed gas
The enterprise (firm) producer
AK 7516
Oxygen
NGO «Chermetavtomatika"
RO 16, 17, 116, 316, 416
  «Leko» USA
EAO 220, 202
  «Belters» Liechtenstein
D-mat 353, OSA-mat 353
  «Starsin» Germany
TC-136, 436, 30, 36
Oxygen, nitrogen
«Leko» USA
ON-mat 822, 812, 821, 850
  «Strohlein» Germany
AM-7514
Nitrogen
NGO «Chermetavtomatika"
TN-14, 15, TN-114
TN-314, TN-414
 
«Leko» USA
N-mat 453, NSA-mat 453
  «Strohlein» Germany
EAN 202, 220, 221
  «Balzers» Liechtenstein
RH-1, 2, 3, 402, 404
Hydrogen
«Leko» USA
EAH 202, 220
  «Balzers» Liechtenstein
H-mat 251, 2000, 2002, 2003
  «Strohlein» Germany