By visiting this site, you accept the use of cookies. More about our cookie policy.

GOST 16412.5-91

GOST R ISO 15353-2014 GOST P 55080-2012 GOST R ISO 16962-2012 GOST R ISO 10153-2011 GOST R ISO 10280-2010 GOST R ISO 4940-2010 GOST R ISO 4943-2010 GOST R ISO 14284-2009 GOST R ISO 9686-2009 GOST R ISO 13899-2-2009 GOST 18895-97 GOST 12361-2002 GOST 12359-99 GOST 12358-2002 GOST 12351-2003 GOST 12345-2001 GOST 12344-88 GOST 12350-78 GOST 12354-81 GOST 12346-78 GOST 12353-78 GOST 12348-78 GOST 12363-79 GOST 12360-82 GOST 17051-82 GOST 12349-83 GOST 12357-84 GOST 12365-84 GOST 12364-84 STATE STANDARD P 51576-2000 GOST 29117-91 GOST 12347-77 GOST 12355-78 GOST 12362-79 GOST 12352-81 GOST P 50424-92 STATE STANDARD P 51056-97 GOST P 51927-2002 GOST P 51928-2002 GOST 12356-81 GOST R ISO 13898-1-2006 GOST R ISO 13898-3-2007 GOST R ISO 13898-4-2007 GOST R ISO 13898-2-2006 STATE STANDARD P 52521-2006 GOST P 52519-2006 GOST R 52520-2006 GOST P 52518-2006 GOST 1429.14-2004 GOST 24903-81 GOST 22662-77 GOST 6012-2011 GOST 25283-93 GOST 18318-94 GOST 29006-91 GOST 16412.4-91 GOST 16412.7-91 GOST 25280-90 GOST 2171-90 GOST 23401-90 GOST 30642-99 GOST 25698-98 GOST 30550-98 GOST 18898-89 GOST 26849-86 GOST 26876-86 GOST 26239.5-84 GOST 26239.7-84 GOST 26239.3-84 GOST 25599.4-83 GOST 12226-80 GOST 23402-78 GOST 1429.9-77 GOST 1429.3-77 GOST 1429.5-77 GOST 19014.3-73 GOST 19014.1-73 GOST 17235-71 GOST 16412.5-91 GOST 29012-91 GOST 26528-98 GOST 18897-98 GOST 26529-85 GOST 26614-85 GOST 26239.2-84 GOST 26239.0-84 GOST 26239.8-84 GOST 25947-83 GOST 25599.3-83 GOST 22864-83 GOST 25599.1-83 GOST 25849-83 GOST 25281-82 GOST 22397-77 GOST 1429.11-77 GOST 1429.1-77 GOST 1429.13-77 GOST 1429.7-77 GOST 1429.0-77 GOST 20018-74 GOST 18317-94 STATE STANDARD P 52950-2008 GOST P 52951-2008 GOST 32597-2013 GOST P 56307-2014 GOST 33731-2016 GOST 3845-2017 STATE STANDARD P ISO 17640-2016 GOST 33368-2015 GOST 10692-2015 GOST P 55934-2013 GOST P 55435-2013 STATE STANDARD P 54907-2012 GOST 3845-75 GOST 11706-78 GOST 12501-67 GOST 8695-75 GOST 17410-78 GOST 19040-81 GOST 27450-87 GOST 28800-90 GOST 3728-78 GOST 30432-96 GOST 8694-75 GOST R ISO 10543-99 GOST R ISO 10124-99 GOST R ISO 10332-99 GOST 10692-80 GOST R ISO 17637-2014 GOST P 56143-2014 GOST R ISO 16918-1-2013 GOST R ISO 14250-2013 GOST P 55724-2013 GOST R ISO 22826-2012 GOST P 55143-2012 GOST P 55142-2012 GOST R ISO 17642-2-2012 GOST R ISO 17641-2-2012 GOST P 54566-2011 GOST 26877-2008 GOST R ISO 17641-1-2011 GOST R ISO 9016-2011 GOST R ISO 17642-1-2011 STATE STANDARD P 54790-2011 GOST P 54569-2011 GOST P 54570-2011 STATE STANDARD P 54153-2010 GOST R ISO 5178-2010 GOST R ISO 15792-2-2010 GOST R ISO 15792-3-2010 GOST P 53845-2010 GOST R ISO 4967-2009 GOST 6032-89 GOST 6032-2003 GOST 7566-94 GOST 27809-95 GOST 22974.9-96 GOST 22974.8-96 GOST 22974.7-96 GOST 22974.6-96 GOST 22974.5-96 GOST 22974.4-96 GOST 22974.3-96 GOST 22974.2-96 GOST 22974.1-96 GOST 22974.13-96 GOST 22974.12-96 GOST 22974.11-96 GOST 22974.10-96 GOST 22974.0-96 GOST 21639.9-93 GOST 21639.8-93 GOST 21639.7-93 GOST 21639.6-93 GOST 21639.5-93 GOST 21639.4-93 GOST 21639.3-93 GOST 21639.2-93 GOST 21639.0-93 GOST 12502-67 GOST 11878-66 GOST 1763-68 GOST 13585-68 GOST 16971-71 GOST 21639.10-76 GOST 2604.1-77 GOST 11930.7-79 GOST 23870-79 GOST 11930.12-79 GOST 24167-80 GOST 25536-82 GOST 22536.2-87 GOST 22536.11-87 GOST 22536.6-88 GOST 22536.10-88 GOST 17745-90 GOST 26877-91 GOST 8233-56 GOST 1778-70 GOST 10243-75 GOST 20487-75 GOST 12503-75 GOST 21548-76 GOST 21639.11-76 GOST 2604.8-77 GOST 23055-78 GOST 23046-78 GOST 11930.11-79 GOST 11930.1-79 GOST 11930.10-79 GOST 24715-81 GOST 5639-82 GOST 25225-82 GOST 2604.11-85 GOST 2604.4-87 GOST 22536.5-87 GOST 22536.7-88 GOST 6130-71 GOST 23240-78 GOST 3242-79 GOST 11930.3-79 GOST 11930.5-79 GOST 11930.9-79 GOST 11930.2-79 GOST 11930.0-79 GOST 23904-79 GOST 11930.6-79 GOST 7565-81 GOST 7122-81 GOST 2604.3-83 GOST 2604.5-84 GOST 26389-84 GOST 2604.7-84 GOST 28830-90 GOST 21639.1-90 GOST 5640-68 GOST 5657-69 GOST 20485-75 GOST 21549-76 GOST 21547-76 GOST 2604.6-77 GOST 22838-77 GOST 2604.10-77 GOST 11930.4-79 GOST 11930.8-79 GOST 2604.9-83 GOST 26388-84 GOST 14782-86 GOST 2604.2-86 GOST 21639.12-87 GOST 22536.8-87 GOST 22536.0-87 GOST 22536.3-88 GOST 22536.12-88 GOST 22536.9-88 GOST 22536.14-88 GOST 22536.4-88 GOST 22974.14-90 GOST 23338-91 GOST 2604.13-82 GOST 2604.14-82 GOST 22536.1-88 GOST 28277-89 GOST 16773-2003 GOST 7512-82 GOST 6996-66 GOST 12635-67 GOST 12637-67 GOST 12636-67 GOST 24648-90

GOST 16412.5−91 iron Powder. Methods of determining sulphur


GOST 16412.5−91

Group B59

STATE STANDARD OF THE USSR

IRON POWDER

Methods of determining sulphur

Iron powder.
Methods for the determination of sulphur


AXTU 0809

Date of introduction 1992−07−01


INFORMATION DATA

1. DEVELOPED AND INTRODUCED by the Academy of Sciences of the Ukrainian SSR

DEVELOPERS

V. N. Klimenko, PhD. tech. Sciences; A. E. kushchevsky, PhD. chem. Sciences; V. A. Dubok, PhD. chem. Sciences (head of subject); V. I. Kornilov, candidate. chem. Sciences; V. V. Garbuz, PhD. chem. Sciences; L. D. Bernatsky

2. APPROVED AND put INTO EFFECT by Decision of the USSR State Committee on management of quality and standards from 16.05.91 N 692

3. REPLACE GOST 16412.5−80

4. REFERENCE NORMATIVE AND TECHNICAL DOCUMENTS

   
The designation of the reference document referenced Paragraph number section
GOST 3118−77 2.2
GOST 4202−75 2.2
GOST 4232−74 2.2
GOST 5583−78 2.2
GOST 9147−80 2.2; 3.2
GOST 10163−76 2.2
GOST 16539−79 3.2
GOST 20490−75 2.2
GOST 24363−80 2.2
GOST 28473−90 Sec. 1



This standard establishes titrimetric (mass fraction of sulfur at 0.005 to 0.05%) and coulometric (with the mass fraction of sulfur from 0.002 to 0.20%) methods for the determination of sulfur in iron powder.

1. GENERAL REQUIREMENTS


General requirements for methods of analysis GOST 28473.

2. TITRIMETRIC METHOD FOR THE DETERMINATION OF SULFUR

2.1. The essence of the method

The method is based on the combustion of a sample of iron powder in an oxygen flow at a temperature of 1300−1350 °C. the Formed sulfur dioxide is displaced by the flow of oxygen in the absorption vessel and is absorbed in this water, resulting in sulphurous acid, which octarepeat mixture odnomodovogo and potassium iodide in the presence of starch indicator.

2.2. Apparatus, reagents and solutions.

Setup for the determination of sulfur, shown in the drawing, consists of a oxygen cylinder 1 provided with a pressure reducing valve and pressure gauge for start-up and regulation of oxygen flow 2; absorption flask 3 containing a solution of potassium permanganate with a mass fraction of 40%, to clean oxygen coming into the oven; U-shaped tube 4, which in the first half (in the direction of oxygen) soda lime and the second calcium chloride; tap to regulate the flow of purified oxygen 5; mullite refractory tube 6 an inner diameter defined by the diameter of the used gate and the size of the boat. The ends of the tube protruding from the furnace, must be at least 250 mm. Tube before use, should be burnt along the entire length at a temperature of 1300−1350 °C in an oxygen flow; a horizontal tubular furnace 7 with a silicon carbide heater that provides heating to 1300−1350 °C, the thermostat 8, which maintain constant temperature furnace; voltage regulator 9 (allowed to use other types of kilns that provides the required temperature); dust collector 10; two-way tap 11, the absorber 12 consisting of two glass vessels with an internal diameter of 30−35 mm and a height of 150 mm, connected by glass bridges, the bottom of which there is a tap for draining the liquid at the end of the analysis. In the left vessel sink included l-shaped tube through which passes a stream of oxygen and sulfur dioxide that ends barbaram sputtering gases for better absorption of sulfur dioxide with water. In the left vessel are absorbed sulphur dioxide, and titration of the resulting solution of sulphurous acid, in the right during the titration is a solution for comparison of color; 13 burettes with a capacity of 25 cmГОСТ 16412.5-91 Порошок железный. Методы определения серы.

Muffle furnace type SNOL according to normative-technical documentation or any other type providing a heating temperature not lower than 900 °C.

ГОСТ 16412.5-91 Порошок железный. Методы определения серы



The hook with which the boat is introduced into the tube for flaring and extracted from it, is made of heat-resistant low-carbon wire with a diameter of 3−5 mm and a length of 500−600 mm.

Boat porcelain with GOST 9147, calcined at temperatures below 900 °C for 6 h or at operating temperature in a stream of oxygen for 2−3 min.

Boats stored in the desiccator, socket covers which do not cover the lubricant. The completeness of burning of sulfur and its compounds from boats is controlled by passing the gaseous products from the furnace through iodobromine solution. The end of burning sulphur is determined by the cessation of bleaching iodobromine solution.

Oxygen gas according to GOST 5583.

Potassium ignominously according to GOST 4202.

Potassium hydroxide according to GOST 24363, a solution with a mass fraction of 4%.

The lime soda.

The calcium chloride.

Potassium iodide according to GOST 4232.

Titrated a solution of a mixture odnomodovogo of potassium and iodide of potassium; 0,0862 g odnomodovogo potassium, 2 g of potassium iodide and 0.4 g of potassium hydroxide were placed in a glass and dissolve in 1 DMГОСТ 16412.5-91 Порошок железный. Методы определения серыof water. The solution was stored in a flask made of dark glass. 1 cmГОСТ 16412.5-91 Порошок железный. Методы определения серыof the mortar is 0,000062 g of sulfur. The mass concentration of the mixture odnomodovogo of potassium and iodide of potassium set at a standard piece of steel, similar in chemical composition and mass fraction of sulfur to analyze the iron powder. When determining the mass fraction of sulfur less than 0.01% of the titrated solution was diluted in a ratio of (1:4), (1:6).

Mass concentration of solution (ГОСТ 16412.5-91 Порошок железный. Методы определения серы), expressed in grams of sulfur per 1 cmГОСТ 16412.5-91 Порошок железный. Методы определения серыof a solution, calculated by the formula

ГОСТ 16412.5-91 Порошок железный. Методы определения серы,


where ГОСТ 16412.5-91 Порошок железный. Методы определения серы — mass fraction of sulfur in the standard sample, %;

ГОСТ 16412.5-91 Порошок железный. Методы определения серы — weight of standard sample, g;

ГОСТ 16412.5-91 Порошок железный. Методы определения серы — the volume of the mixture solution odnomodovogo and potassium iodide; used for titration of standard solution of the sample, cmГОСТ 16412.5-91 Порошок железный. Методы определения серы;

ГОСТ 16412.5-91 Порошок железный. Методы определения серы — the volume of the mixture solution consumed for titration of the solution in the reference experiment, cmГОСТ 16412.5-91 Порошок железный. Методы определения серы.

Potassium permanganate according to GOST 20490, solution with a mass fraction of 4% solution of potassium hydroxide with a mass fraction of 40%.

Hydrochloric acid according to GOST 3118.

The soluble starch according to GOST 10163, solution with a mass fraction of 0.05%; 0.5 g soluble starch, triturated in a porcelain mortar with 50 cmГОСТ 16412.5-91 Порошок железный. Методы определения серыof water and pour the slurry in a thin stream at 950 cmГОСТ 16412.5-91 Порошок железный. Методы определения серы. of boiling water. To the obtained solution poured 15 cmГОСТ 16412.5-91 Порошок железный. Методы определения серыof hydrochloric acid. Use freshly prepared solution.

Copper oxide according to GOST 16539 powdered or granulated, calcined at a temperature of (800±25) °C for 3−4

h

2.3. Preparation for assay

Before analysis, the installation must be checked for tightness at a temperature of 1300−1350 °C. connect the installation to the container, open the container and allow oxygen at a rate of 2 DMГОСТ 16412.5-91 Порошок железный. Методы определения серы/min Tap switch 5 so that the oxygen enters the oven. The faucet 11 is closed. After 2 min should stop the bubbling of the absorption flask 3. If after 5 min, the bubbles do not stand out, consider installing tight. Then determine the presence of reductive substances in the tube and the boat for the combustion of the sample. For this, each vessel sink is poured on 120 cmГОСТ 16412.5-91 Порошок железный. Методы определения серыof starch solution is poured from the burette a few drops of the titrated solution mixtures odnomodovogo and potassium iodide before the appearance of blue color and let the oxygen flow with such speed that the liquid level in the absorption vessel has risen by 30−40 mm. If starch solution in the absorption vessel after some time, become colourless, indicating the selection of the restorative porcelain tube of gaseous substances, without stopping oxygen flow to the absorption solution is added from burette a solution of a mixture of potassium iodide and odnomodovogo until while the intensity of the color in the left and right parts of the absorber will not be the same.

2.4. Analysis

A suspension of iron powder weighing 1 g is placed in a porcelain boat and cover the top evenly with a layer of cuprous oxide (1 g). Boat with iron powder and copper oxide was placed in the most heated portion of the porcelain tube, the tube is closed immediately with a rubber stopper with a glass tube or valve through which the withdrawn gaseous products of the combustion into the absorption vessel and produce combustion. Oxygen should be flowing at a rate of 2 DMГОСТ 16412.5-91 Порошок железный. Методы определения серы/min to prevent the formation of vacuum in the furnace. When leaving the furnace in the absorption vessel gases begin to discolor the solution, a solution mixture of potassium iodide and odnomodovogo with such speed that the color of the solution in the left part of the absorber close to the color of the solution comparison. The titration is complete when the color intensity of the solutions in both vessels are equal. After that, the oxygen flow 1 min. If the color of the solution does not change, the combustion is complete.

2.5. Processing of the results

2.5.1. Mass fraction of sulfur (ГОСТ 16412.5-91 Порошок железный. Методы определения серы) in percent is calculated by the formula

ГОСТ 16412.5-91 Порошок железный. Методы определения серы,


where ГОСТ 16412.5-91 Порошок железный. Методы определения серыis the volume of solution of a mixture odnomodovogo and iodide of potassium consumed in the titration of a solution of test sample, cmГОСТ 16412.5-91 Порошок железный. Методы определения серы;

ГОСТ 16412.5-91 Порошок железный. Методы определения серы — the volume of the mixture solution odnomodovogo and potassium iodide consumed for titration of the solution in the reference experiment, cmГОСТ 16412.5-91 Порошок железный. Методы определения серы;

ГОСТ 16412.5-91 Порошок железный. Методы определения серы — mass concentration of a solution of a mixture odnomodovogo and potassium iodide; expressed in g/cmГОСТ 16412.5-91 Порошок железный. Методы определения серы;

ГОСТ 16412.5-91 Порошок железный. Методы определения серы — weight of iron powder, g

.

2.5.2. Allowable absolute differences of the results of the parallel definitions should not exceed the values given in the table.

   
Mass fraction of sulfur, % Allowable absolute differences, %
From 0.002 to 0.005 incl. 0,0013
SV. 0,005 «0,010 « 0,0017
«0,010» 0,020 « 0,0025
«0,020» 0,050 « 0,0040
«0,050» 0,100 « 0,0070
«0,100» 0,200 « 0,0100

3. COULOMETRIC METHOD FOR THE DETERMINATION OF SULFUR

3.1. The essence of the method

The method is based on the combustion of a sample of iron powder in an oxygen flow at a temperature of 1300−1350 °C. the Formed sulfur dioxide is absorbed by the absorptive solution and causes an increase of acidity and the change in the EMF indicator system pH meter.

The quantity of electricity necessary to achieve the initial pH of the absorbing solution is proportional to the concentration of sulfur in the sample, fixed colorometer integrator current, showing the amount of sulfur in percent. The effect of carbon avoided by selecting the initial pH value of absorption solution at the pH of 3.9. At this acid the absorption solution is practically not absorbed by the carbon dioxide produced by the combustion of sample carbon, and the sulfur dioxide is absorbed completely.

3.2. Apparatus, reagents and solutions

Coulometric installation of any type complete with all accessories (comonomer, absorption vessels, pH meter, corrector mass) for the precision of the analyses specified in the table. The weight set depending on the type of installation.

A horizontal tubular furnace with silicon carbide heaters, ensure the temperature of 1300−1350 °C.

Tube refractory mullite.

Muffle furnace type SNOL according to normative-technical documentation or any other type providing a heating temperature not lower than 900 °C.

Boat porcelain with GOST 9147, calcined at temperatures below 900 °C for 6 h or at operating temperature in a stream of oxygen for 2−3 min.

Boats stored in the desiccator, socket covers which do not cover the lubricant.

Absorption and support the solutions prepared in accordance with the type of the used coulometric setup.

Copper oxide according to GOST 16539, powdered or granulated, calcined at a temperature of (800±25) °C for 3−4 h.

3.3. Analysis

Device prepare to work in accordance with the instructions. To remove traces of sulfur from the unit before starting the analysis through the installation flow, the flow of oxygen and calcined up.

The weight of iron powder with a mass of 0.5−1 g is transferred into a porcelain boat, pour a uniform layer of copper oxide mass of 1 g, placed the boat with the hitch in the most heated portion of the porcelain tube and quickly close the tube with stopper. Click on the «reset» button and set the display indication the digital display to «zero». Burn a portion of iron powder, flow of oxygen at a temperature of 1300−1350 °C. After complete combustion of the sample of iron powder in what is judged by the completion of the titration, record the result of the analysis by reading the digital display, open the stopper and remove the boat.

3.4. Processing of the results

3.4.1. Mass fraction of sulfur (ГОСТ 16412.5-91 Порошок железный. Методы определения серы) in percent is calculated by the formula

ГОСТ 16412.5-91 Порошок железный. Методы определения серы,


where ГОСТ 16412.5-91 Порошок железный. Методы определения серы — reading digital display of the device, the resulting combustion of the sample of the sample, %;

ГОСТ 16412.5-91 Порошок железный. Методы определения серы — the arithmetic average of the readings of the digital display device, resulting from the burning flux when conducting control experiments, %.

3.4.2. Allowable absolute differences of the results of the parallel definitions should not exceed the values given in the table.