By visiting this site, you accept the use of cookies. More about our cookie policy.

GOST 12344-88

GOST R ISO 15353-2014 GOST P 55080-2012 GOST R ISO 16962-2012 GOST R ISO 10153-2011 GOST R ISO 10280-2010 GOST R ISO 4940-2010 GOST R ISO 4943-2010 GOST R ISO 14284-2009 GOST R ISO 9686-2009 GOST R ISO 13899-2-2009 GOST 18895-97 GOST 12361-2002 GOST 12359-99 GOST 12358-2002 GOST 12351-2003 GOST 12345-2001 GOST 12344-88 GOST 12350-78 GOST 12354-81 GOST 12346-78 GOST 12353-78 GOST 12348-78 GOST 12363-79 GOST 12360-82 GOST 17051-82 GOST 12349-83 GOST 12357-84 GOST 12365-84 GOST 12364-84 STATE STANDARD P 51576-2000 GOST 29117-91 GOST 12347-77 GOST 12355-78 GOST 12362-79 GOST 12352-81 GOST P 50424-92 STATE STANDARD P 51056-97 GOST P 51927-2002 GOST P 51928-2002 GOST 12356-81 GOST R ISO 13898-1-2006 GOST R ISO 13898-3-2007 GOST R ISO 13898-4-2007 GOST R ISO 13898-2-2006 STATE STANDARD P 52521-2006 GOST P 52519-2006 GOST R 52520-2006 GOST P 52518-2006 GOST 1429.14-2004 GOST 24903-81 GOST 22662-77 GOST 6012-2011 GOST 25283-93 GOST 18318-94 GOST 29006-91 GOST 16412.4-91 GOST 16412.7-91 GOST 25280-90 GOST 2171-90 GOST 23401-90 GOST 30642-99 GOST 25698-98 GOST 30550-98 GOST 18898-89 GOST 26849-86 GOST 26876-86 GOST 26239.5-84 GOST 26239.7-84 GOST 26239.3-84 GOST 25599.4-83 GOST 12226-80 GOST 23402-78 GOST 1429.9-77 GOST 1429.3-77 GOST 1429.5-77 GOST 19014.3-73 GOST 19014.1-73 GOST 17235-71 GOST 16412.5-91 GOST 29012-91 GOST 26528-98 GOST 18897-98 GOST 26529-85 GOST 26614-85 GOST 26239.2-84 GOST 26239.0-84 GOST 26239.8-84 GOST 25947-83 GOST 25599.3-83 GOST 22864-83 GOST 25599.1-83 GOST 25849-83 GOST 25281-82 GOST 22397-77 GOST 1429.11-77 GOST 1429.1-77 GOST 1429.13-77 GOST 1429.7-77 GOST 1429.0-77 GOST 20018-74 GOST 18317-94 STATE STANDARD P 52950-2008 GOST P 52951-2008 GOST 32597-2013 GOST P 56307-2014 GOST 33731-2016 GOST 3845-2017 STATE STANDARD P ISO 17640-2016 GOST 33368-2015 GOST 10692-2015 GOST P 55934-2013 GOST P 55435-2013 STATE STANDARD P 54907-2012 GOST 3845-75 GOST 11706-78 GOST 12501-67 GOST 8695-75 GOST 17410-78 GOST 19040-81 GOST 27450-87 GOST 28800-90 GOST 3728-78 GOST 30432-96 GOST 8694-75 GOST R ISO 10543-99 GOST R ISO 10124-99 GOST R ISO 10332-99 GOST 10692-80 GOST R ISO 17637-2014 GOST P 56143-2014 GOST R ISO 16918-1-2013 GOST R ISO 14250-2013 GOST P 55724-2013 GOST R ISO 22826-2012 GOST P 55143-2012 GOST P 55142-2012 GOST R ISO 17642-2-2012 GOST R ISO 17641-2-2012 GOST P 54566-2011 GOST 26877-2008 GOST R ISO 17641-1-2011 GOST R ISO 9016-2011 GOST R ISO 17642-1-2011 STATE STANDARD P 54790-2011 GOST P 54569-2011 GOST P 54570-2011 STATE STANDARD P 54153-2010 GOST R ISO 5178-2010 GOST R ISO 15792-2-2010 GOST R ISO 15792-3-2010 GOST P 53845-2010 GOST R ISO 4967-2009 GOST 6032-89 GOST 6032-2003 GOST 7566-94 GOST 27809-95 GOST 22974.9-96 GOST 22974.8-96 GOST 22974.7-96 GOST 22974.6-96 GOST 22974.5-96 GOST 22974.4-96 GOST 22974.3-96 GOST 22974.2-96 GOST 22974.1-96 GOST 22974.13-96 GOST 22974.12-96 GOST 22974.11-96 GOST 22974.10-96 GOST 22974.0-96 GOST 21639.9-93 GOST 21639.8-93 GOST 21639.7-93 GOST 21639.6-93 GOST 21639.5-93 GOST 21639.4-93 GOST 21639.3-93 GOST 21639.2-93 GOST 21639.0-93 GOST 12502-67 GOST 11878-66 GOST 1763-68 GOST 13585-68 GOST 16971-71 GOST 21639.10-76 GOST 2604.1-77 GOST 11930.7-79 GOST 23870-79 GOST 11930.12-79 GOST 24167-80 GOST 25536-82 GOST 22536.2-87 GOST 22536.11-87 GOST 22536.6-88 GOST 22536.10-88 GOST 17745-90 GOST 26877-91 GOST 8233-56 GOST 1778-70 GOST 10243-75 GOST 20487-75 GOST 12503-75 GOST 21548-76 GOST 21639.11-76 GOST 2604.8-77 GOST 23055-78 GOST 23046-78 GOST 11930.11-79 GOST 11930.1-79 GOST 11930.10-79 GOST 24715-81 GOST 5639-82 GOST 25225-82 GOST 2604.11-85 GOST 2604.4-87 GOST 22536.5-87 GOST 22536.7-88 GOST 6130-71 GOST 23240-78 GOST 3242-79 GOST 11930.3-79 GOST 11930.5-79 GOST 11930.9-79 GOST 11930.2-79 GOST 11930.0-79 GOST 23904-79 GOST 11930.6-79 GOST 7565-81 GOST 7122-81 GOST 2604.3-83 GOST 2604.5-84 GOST 26389-84 GOST 2604.7-84 GOST 28830-90 GOST 21639.1-90 GOST 5640-68 GOST 5657-69 GOST 20485-75 GOST 21549-76 GOST 21547-76 GOST 2604.6-77 GOST 22838-77 GOST 2604.10-77 GOST 11930.4-79 GOST 11930.8-79 GOST 2604.9-83 GOST 26388-84 GOST 14782-86 GOST 2604.2-86 GOST 21639.12-87 GOST 22536.8-87 GOST 22536.0-87 GOST 22536.3-88 GOST 22536.12-88 GOST 22536.9-88 GOST 22536.14-88 GOST 22536.4-88 GOST 22974.14-90 GOST 23338-91 GOST 2604.13-82 GOST 2604.14-82 GOST 22536.1-88 GOST 28277-89 GOST 16773-2003 GOST 7512-82 GOST 6996-66 GOST 12635-67 GOST 12637-67 GOST 12636-67 GOST 24648-90

GOST 12344−88 Steel alloyed and high alloy. Methods for determination of carbon


GOST 12344−88

Group B39

STATE STANDARD OF THE USSR

STEEL ALLOYED AND HIGH-ALLOYED

Methods for determination of carbon

Alloyed and high-alloyed steels.
Methods of carbon determination


AXTU 0809

Valid from 01.01.90
to 01.07.95*
__________________________
* Expiration removed by Protocol No. 4−93
The interstate Council for standardization, Metrology
and certification (I & C N 4, 1994). — Note the CODE.

INFORMATION DATA


1. DEVELOPED AND INTRODUCED by the Ministry of ferrous metallurgy of the USSR

PERFORMERS

S. M. Novokshenov, V. P., Zamaraev, A. I. Orzechowska

2. APPROVED AND put INTO EFFECT by decision of the USSR State Committee for standards from 21.09.88 N 324

3. REPLACE GOST 12344−78

4. REFERENCE NORMATIVE AND TECHNICAL DOCUMENTS

   
The designation of the reference document referenced
Item number
GOST 546−79
2.3
GOST 860−75
2.3
GOST 2603−79
2.3
GOST 4470−79
2.3
GOST 5583−78
2.2
GOST 9147−80
2.2
GOST 13610−79
2.3
GOST 16539−79
2.3
GOST 20560−81
1.1



This standard sets the coulometric method for the determination of carbon (with mass fraction of carbon from 0.002 to 2.0%) and the method of infrared spectroscopy (at a mass fraction of carbon from 0.001 to 2.0%).

1. GENERAL REQUIREMENTS


1.1. General requirements for methods of analysis GOST 20560−81.

2. COULOMETRIC METHOD FOR DETERMINING CARBON


2.1. The essence of the method

The method is based on the combustion of a sample of steel in a current of oxygen in presence of flux at a temperature of 1300−1400 °C, the absorption of the formed carbon dioxide absorption by a solution with a particular initial pH value and subsequent measurement (in the apparatus for coulometric titration) the amount of electricity spent to restore the original pH value, which is proportional to the mass fraction of carbon in the linkage sample.

2.2. Equipment

Coulometric installation (drawing). Allowed the use of installations of any type, including complete with automatic weights (correction mass), providing the accuracy of the analysis required by this standard.

When you use automatic weights the measurement error of the mass of sample should not exceed ±0.001 g.

Drawing

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода

1 — oxygen tank (with a purity not less than 95%) according to GOST 5583−78 (use oxygen from coloradobased);
2, 3 reducers reducing the pressure of the oxygen; 4 — rotameter with pneumatic regulation of the flow of oxygen (from 0.2 to 2.0 DMГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода/min);
5 — tube refractory mullite designed for burning of sample; 6 — tube furnace, providing temperatures up to 1400 °C;
7 — a filter-absorber is filled with cotton wool for cleaning the products of combustion from the solid particles of oxides; 8 — gauge Express analyzer;
9 — pair electrode pH meter; 10 — autoregulated device coulometric titration; 11 — digital Board;
12 — anodic compartment of the sensor; 13 — plastic partition between the sensors; 14 — cathode compartment sensor;
15 — mullite refractory tube, is designed for hot clean oxygen
(in the determination of carbon with a mass fraction of more than 0.03%, the hot purging of oxygen can not be used);
16 — column filled with oscarito to clean oxygen from carbon dioxide.


Boat porcelain with GOST 9147−80 or other normative and technical documentation, pre-calcined in flowing oxygen at operating temperature.

In the determination of carbon less than 0.05% pumps calcined directly before analysis, cooled to room temperature and stored in a desiccator.

Tubular resistance furnace, providing temperatures up to 1400 °C allows the use of induction furnaces.

The hook is made of heat-resistant low-carbon steel with a length of 300−600 mm, a diameter of 3−5 mm.

2.3. Reagents and solutions

Absorption and support solutions in accordance with the type of the used coulometric setup.

Marshes carbonyl iron radio GOST 13610−79 OS. h or other normative and technical documentation, tin GOST 860−75 or other normative and technical documentation, and copper oxide according to GOST 16539−79 or other normative and technical documentation, the copper metal according to GOST 546−79 or other regulatory-technical documentation.

Allowed the use of other flooded areas.

Mass fraction of carbon in the flux should not exceed the appropriate value allowable discrepancies between the results of parallel measurements.

Ethers: sulphuric acid (medical) or diethyl ether. Allowed to use other volatile organic solvents: acetone according to GOST 2603−79, chloroform, etc.

Manganese dioxide according to GOST 4470−79.

Gidroperit.

2.4. Preparation for assay

Before analysis the installation of a drive in accordance with the instructions supplied with the device.

Before starting work, and after replacement of the mullite tubes burn two or three arbitrary linkage of steel with a mass fraction of carbon of 1%.

In determining the carbon materials with a high mass fraction of sulphur (free-cutting steel), to eliminate the effect of sulfur dioxide used manganese dioxide or gidroperit, which is placed in the filter-absorber (7).

The calibration of an instrument performed on standard specimens of carbon steel.

The control of correctness of analysis results set by standard samples of steels corresponding in chemical composition and determine the concentrations of the analyzed materials.

To control the correctness of the results of analysis with each batch of samples analyzed standard samples of steel at least twice per shift.

The arithmetic average of the results of the analysis of standard sample should not differ from the certified values by more than 0.6 ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углеродаor 0.5 ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углеродаallowable absolute differences established for the respective concentration range when performing analysis of the two (three) parallel batches.

2.5. Analysis

In the analysis of alloy steels in the sample of steel weighing 0.25−0.5 g (depending on the mass fraction of carbon in steel and its chemical composition) of calcined placed in a porcelain boat and add 0.5−1 g of copper or iron or any other beach.

In the analysis of high-alloyed steels used 1.5 g of a mixture of marshes, consisting of tin and iron or oxides of copper and iron taken in both cases in a ratio of 1:2.

When the mass fraction of carbon in the steel less than 0.20% of the portion recommended to be washed with ether or other volatile organic solvent and air dry.

The boat with the charge of metal and flux is placed in the most heated portion of the porcelain tube, which quickly closed the metal gate: press the button «reset», while the indicator digital display set to «zero».

In the burning process of mounting the metal on the digital display there is a continuous reference.

The analysis is complete, if the reading scoreboard does not change within one minute, or changes to the value of the idling score of the instrument.

In parallel, through all stages of the analysis, conduct the analysis of control experience. For this purpose calcined in a porcelain boat is placed corresponding to the flux and burn it at operating temperature during time spent on the burning of the sample of the analyzed material. The duration of the measurement (combustion of sample metal) of 1.5−3 min depending on the chemical composition of the analyzed material.

2.6. Processing of the results

2.6.1. Mass fraction of carbon (ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода) in percent is calculated by the formula

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода


where ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода — the weight of the portion in which the calibrated device, g;

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода — reading digital display of the device, the resulting combustion of the sample of the analyzed material, %;

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода — the arithmetic mean of the readings obtained from the combustion of smoother, % (reference experiment);

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углеродаis the mass of the analyzed sample, g.

When using appliances with automatic weights (correction mass) mass fraction of carbon in percent is calculated by the formula

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода


2.6.2. The absolute differences of the extreme results of three (aГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода) or two (ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода) of parallel measurements (at confidence probability ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода=0,95) must not exceed the value of permissible differences for the relevant concentration range given in the table.

     

Mass fraction of carbon, %
Allowable absolute differences, %
 

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода

From 0.001 to 0.002 incl.
0,0008 0,0007
SV. Of 0.002 «to 0.005 «
0,0010 0,0008
«0,005» 0,01 « 0,0020
0,0017
«0,01» 0,02 «
0,004 0,003
«0,02» 0,05 «
0,006 0,005
«0,05» 0,10 «
0,010 0,008
«0,10» 0,2 «
0,015 0,012
«0,2» 0,5 «
0,020 0,017
«0,5» 1,0 « 0,030
0,025
«1,0» 2,0 «
0,050 0,04



2.6.3. For the results analysis be the arithmetic mean of two (three) of parallel definitions, minus the average of the two (three) parallel the results of the reference experiment.

2.6.4. Final result for the take a result that meets the requirements of section 2.6.2.

3. INFRARED ABSORPTION METHOD


3.1. The essence of the method

The method is based on the combustion of a sample of steel in a current of oxygen in presence of flux at a temperature of 1700 °C and determining the quantity of formed carbon dioxide by measuring its absorption of infrared radiation.

3.2. Equipment and reagents

Any type of automatic analyzer, based on the principle of absorption of infrared radiation and to ensure the accuracy of the analysis required by this standard.

Ether sulfate (medical). Allowed to use other volatile organic solvents: acetone, chloroform, etc.

The smoother used depending on the type of the used analyzer.

3.3. Preparation for assay

Before analysis the installation of a drive in accordance with the instructions supplied with the device.

The calibration of an instrument performed on standard specimens of carbon steel.

The control of correctness of analysis results set by standard samples of steels corresponding in chemical composition and determine the concentrations of the analyzed materials. To control the correctness of the results of analysis with each batch of samples analyzed standard samples of steel at least twice per shift.

The arithmetic average of the results of the analysis of standard sample should not differ from the certified values by more than 0.6 ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углеродаor 0.5 ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углеродаallowable absolute differences established for the respective concentration range when performing analysis of the two (three) parallel batches.

3.4. Analysis

The analysis is carried out in accordance with the instructions supplied with the device.

When the mass fraction of carbon in the steel less than 0.20% of the portion recommended to be washed with ether or other volatile organic solvent and air dry.

In parallel through all stages of the analysis carried out the analysis of control experience.

The duration of the measurement (the burning of the sample metal) — 45 p

3.5. Processing of the results

3.5.1. Mass fraction of carbon (ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода) in percent is calculated by the formula

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода


where ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода — reading digital display of the device, the resulting combustion of the sample of the analyzed material, %;

ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода — the testimony of a digital display device, resulting from the burning flux, % (reference experiment).

3.5.2. The absolute differences of the extreme results of three (aГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода) or two (ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода) of parallel measurements (at confidence probability ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода=0,95) must not exceed the value of permissible differences for the relevant concentration range given in the table.

3.5.3. For the results analysis be the arithmetic mean of two (three) of parallel definitions, minus the average of the two (three) parallel the results of the reference experiment.

3.5.4. Final result for the take a result that meets the requirements of section 2.6.2.