GOST 18895-97
GOST 18895−97 Steel. Method of photoelectric spectral analysis
GOST 18895−97
Group B39
INTERSTATE STANDARD
STEEL
Method of photoelectric spectral analysis
Steel. Method of photoelectric spectral analysis
ISS 77.080.20
AXTU 0809
Date of introduction 1998−01−01
Preface
1 DEVELOPED by the Russian Federation, the Interstate technical Committee MTC 145 «monitoring Methods of steel products"
INTRODUCED by Gosstandart of Russia
2 ADOPTED by the Interstate Council for standardization, Metrology and certification (Protocol No. 11−97, dated 25 April 1997)
The adoption voted:
The name of the state |
The name of the national authority for standardization |
The Republic Of Azerbaijan |
Azgosstandart |
The Republic Of Armenia |
Armastajad |
The Republic Of Belarus |
Gosstandart Of Belarus |
The Republic Of Kazakhstan |
Gosstandart Of The Republic Of Kazakhstan |
Russian Federation |
Gosstandart Of Russia |
The Republic Of Tajikistan |
Tajikistandart |
Turkmenistan |
The main state inspection of Turkmenistan |
Ukraine |
Gosstandart Of Ukraine |
3 Resolution of the State Committee of the Russian Federation for standardization, Metrology and certification dated September 23, 1997 N 332 interstate standard GOST 18895−97 introduced directly as state standard of the Russian Federation from January 1, 1998
4 REPLACE GOST 18895−81
5 REISSUE. January 2002
1 SCOPE
This standard establishes the photoelectric spectral method in determination of steel mass fraction of elements, %:
carbon | from | 0,010 | to | 2,0; |
||
sulfur | « | 0,002 | « | 0,20; | ||
phosphorus | « | 0,002 | « | 0,20; | ||
silicon | « | 0,010 | « | 2,5; | ||
manganese | « | 0,050 | « | 5,0; | ||
chrome | « | 0,010 | « | 10,0; | ||
Nickel | « | 0,010 | « | 10,0; | ||
cobalt | « | 0,010 | « | 5,0; | ||
copper | « | 0,010 | « | 2,0; | ||
aluminum | « | 0,005 | « | 2,0; | ||
arsenic | « | 0,005 | « | 0,20; | ||
molybdenum | « | 0,010 | « | 5,0; | ||
tungsten | « | 0,020 | « | 5,0; | ||
vanadium | « | 0,005 | « | 5,0; | ||
titanium | « | 0,005 | « | 2,0; | ||
of niobium | « | 0,010 | « | 2,0; | ||
Bora | « | 0,001 | « | 0,10; | ||
Zirconia | « | 0,005 | « | 0,50. |
The method is based on excitation of atoms of the elements in steel by electric discharge, the decomposition of the radiation into a spectrum, the measurement of analytical signals proportional to the intensity or the logarithm of the intensity of spectral lines and subsequent determination of mass fractions of elements using the calibration parameters.
2 NORMATIVE REFERENCES
The present standard features references to the following standards:
GOST 8.315−97 GSI. Standard samples of composition and properties of substances and materials. The main provisions of the
GOST 859−2001 Copper. Brand
GOST 2424−83* grinding wheels. Specifications
________________
* On the territory of the Russian Federation the document is not valid. Valid GOST R 52781−2007, here and hereafter. — Note the manufacturer’s database.
GOST 6456−82 emery Cloth sanding paper. Specifications
GOST 7565−81 (ISO 377−2-89) Iron, steel and alloys. Method of sampling for chemical composition
GOST 10157−79 Argon gaseous and liquid. Specifications
GOST 21963−82* cutting wheels. Specifications
________________
* On the territory of the Russian Federation the document is not valid. Valid GOST 21963−2002, here and hereafter. — Note the manufacturer’s database.
3 SAMPLING AND SAMPLE PREPARATION
Sampling and sample preparation — according to GOST 7565 with the Supplement. The surface of the sample intended for the sparking, sharpen on the plane. On the surface are not permitted shells, slag inclusions, color tint and other defects.
4 EQUIPMENT AND MATERIALS
PV vacuum and air installation of individual calibration.
Cutting machine types 8230 and 2К337.
Grinding machine model 3Е881.
Grinding machine (Stripping, sanding) of the type VN-500.
Universal machine for sharpening electrodes model CP-35.
Screw-cutting lathe model 1604.
Cutting discs 400х4х32 mm according to GOST 21963.
Elektrokorundovye grinding wheels with ceramic bond, grit No. 50 cultivar ST-2, size 300х40х70 mm according to GOST 2424.
Emery cloth sanding paper type 2 paper brand SB-200 (A7) from the normal electrocorundum grit 40−60 GOST 6456.
Argon gas of the highest grade according to GOST 10157.
The furnace for the drying and purification of the argon type SUOL-0.4.4/12-H2-V4.2.
In the case of the vacuum PV systems use permanent electrodes are rods of silver, copper and tungsten with a diameter of 5−6 mm or a tungsten wire with a diameter of 1−2 mm with a length of at least 50 mm.
For air PV installations using copper bars marks M00, M1, M2 according to GOST 859 and coal terminals brand C3 with a diameter of 6 mm and a length of not less than 50 mm.
To determine the mass fraction of elements in the rolling of steel used vacuum and air photovoltaic installations. If the sample does not cover completely the hole in the tripod of the installation use the contact chamber (see figure 1) or other device that restricts the hole in the table tripod.
Figure 1 — Contact the chamber for vacuum spectrometer
1 — strip; 2 — plate; 3 — spring; 4 — contact
Figure 1 — Contact the chamber for vacuum spectrometer
Allowed to use other equipment, equipment and materials ensuring the accuracy of the analysis required by this standard.
5 PREPARING FOR ANALYSIS
5.1 Preparing the setup the measurements are carried out in accordance with the maintenance manual and operation of the facility.
5.2 Grading of each photovoltaic installation is carried out experimentally by the introduction of techniques of performance of measurements using the standard samples (CO) composition, certified in accordance with GOST 8.315.
Allowed the use of homogeneous samples analyzed by standardized or certified methods of chemical analysis.
5.3 In the initial calibration, perform at least five series of measurements on different days of the photovoltaic installation. In a series of for each carried out WITH two pairs of parallel (executed one after the other on the same surface) measurements. The order of pairs of parallel measurements for all series randomizer. Calculate the arithmetic average of the analytical signal on the series and the arithmetic average of the analytical signals for the five series of measurements for each.
The calculated or graphically set calibration characteristics, which Express in a formula, graph or table. The calibration characteristics are used to determine the mass fraction of the controlled elements, either directly or with the influence of the chemical composition and physico-chemical properties of the object.
For installations interfaced with a computer, the procedure of calibration is determined by the software. The accuracy of the results of the analysis shall meet the requirements of this standard.
5.4 When re-calibration allowed reducing the number of lots to two.
5.5 In the case of operational calibration (obtaining the calibration parameters with every batch of samples analysed) perform at least two parallel measurements for each.
6 ANALYSIS
6.1 Conditions the analysis on photovoltaic installations is given in Appendix A (tables A. 1, A. 2).
6.2 the wavelengths of spectral lines and the range of values of mass fraction of elements is given in Appendix A (table A. 3).
6.3 carry out two parallel measurements of the values of the analytical signal for each monitored item of the sample in the conditions adopted in the calibration. There are three parallel measurements.
7 PROCESSING OF RESULTS
7.1 If the difference values of the analytical signal, expressed in units of mass fraction, not more (table 1) for two parallel measurements and 1.2 for the three parallel measurements, calculate the average arithmetic value.
Allowed to Express the value of the analytical signal and the differences of parallel measurements in units of the scale readout and recording device and a photovoltaic installation. In this case, expressed in units of the scale readout-registered device by using the established calibration parameters.
In case of exceeding the differences of parallel measurements of permissible values of (1,2 ) the analysis is repeated.
7.2 For the final result of the analysis be the arithmetic mean of two or three parallel dimensions that meet the requirements of 7.1.
7.3 stability Control of analysis results
7.3.1 stability Control calibration parameters for the upper and lower limits of the measuring range is carried out at least once per shift using WITH or homogeneous samples. Allowed to control only the upper limit or mid-range.
For (samples) carry out two parallel measurements of the analytical signal. The values of the analytical signal expressed in units of mass fraction or of the scale readout and recording device and a photovoltaic installation.
7.3.2 If the difference values of the analytical signal for parallel measurements does not exceed (table 1), calculated the arithmetic mean and the difference , where the value of the analytical signal for THE (sample) obtained by the method specified in 5.3.
Table 1 — Rules and regulations to control the accuracy of
Item | Mass fraction of elements, % | The error analysis result , % |
Allowable difference, % | |||
between the two parallel |
between results |
between results |
between the results of reproduction characteristics obtained when setting calibration parameters, and their meanings when monitoring the stability of calibration parameters | |||
Carbon |
0,010−0,020 |
0,004 |
0,003 |
0,005 |
0,005 |
0,003 |
0,020−0,050 |
0,008 |
0,007 |
0,010 |
0,008 |
0,006 | |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,012 |
0,009 | |
0,10−0,20 |
0,016 |
0,013 |
0,020 |
0,017 |
0,012 | |
0,20−0,50 |
0,024 |
0,020 |
0,030 |
0,025 |
0,018 | |
0,50−1,00 |
0,04 |
0,03 |
0,05 |
0,04 |
0,03 | |
Of 1.00−2,0 |
0,06 | 0,05 | 0,07 | 0,06 | 0,04 | |
Sulfur |
0,002−0,005 |
0,002 |
0,002 |
0,002 |
0,002 |
0,001 |
0,005−0,010 |
0,002 |
0,003 |
0,003 |
0,003 |
0,002 | |
0,010−0,020 |
0,003 |
0,003 |
0,004 |
0,004 |
0,002 | |
0,020−0,050 |
0,008 |
0,008 |
0,010 |
0,008 |
0,006 | |
0,050−0,10 |
0,012 |
0,013 |
0,015 |
0,012 |
0,009 | |
0,10−0,20 |
0,016 | 0,017 | 0,020 | 0,016 | 0,012 | |
Phosphorus |
0,002−0,005 |
0,002 |
0,002 |
0,002 |
0,002 |
0,001 |
0,005−0,010 |
0,002 |
0,002 |
0,003 |
0,003 |
0,002 | |
0,010−0,020 |
0,003 |
0,003 |
0,004 |
0,004 |
0,002 | |
0,020−0,050 |
0,006 |
0,005 |
0,007 |
0,006 |
0,004 | |
0,050−0,10 |
0,008 |
0,007 |
0,010 |
0,009 |
0,006 | |
0,10−0,20 |
0,012 | 0,010 | 0,015 | 0,013 | 0,009 | |
Silicon |
0,010−0,020 |
0,004 |
0,003 |
0,005 |
0,005 |
0,003 |
0,020−0,050 |
0,008 |
0,007 |
0,010 |
0,008 |
0,006 | |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,013 |
0,009 | |
0,10−0,20 |
0,020 |
0,017 |
0,025 |
0,022 |
0,015 | |
0,20−0,50 |
0,03 |
0,03 |
0,04 |
0,03 |
0,02 | |
0,50−1,00 |
0,06 |
0,05 |
0,07 |
0,06 |
0,04 | |
1,00−2,5 |
0,08 | 0,07 | 0,10 | 0,08 | 0,06 | |
Manganese | 0,050−0,10 |
0,008 |
0,007 |
0,010 |
0,010 |
0,006 |
0,10−0,20 |
0,016 |
0,013 |
0,020 |
0,018 |
0,012 | |
0,20−0,50 |
0,024 |
0,020 |
0,030 |
0,030 |
0,018 | |
0,50−1,00 |
0,04 |
0,03 |
0,05 |
0,04 |
0,03 | |
Of 1.00−2,0 |
0,08 |
0,07 |
0,10 |
0,08 |
0,06 | |
2,0−5,0 |
0,12 | 0,10 | 0,15 | 0,12 | 0,09 | |
Chrome |
0,010−0,020 |
0,003 |
0,003 |
0,004 |
0,004 |
0,002 |
0,020−0,050 |
0,005 |
0,004 |
0,006 |
0,006 |
0,004 | |
0,050−0,10 |
0,008 |
0,007 |
0,010 |
0,010 |
0,006 | |
0,10−0,20 |
0,016 |
0,013 |
0,020 |
0,017 |
0,012 | |
0,20−0,50 |
0,024 |
0,020 |
0,030 |
0,030 |
0,018 | |
0,50−1,00 |
0,04 |
0,03 |
0,05 |
0,04 |
0,03 | |
Of 1.00−2,0 |
0,08 |
0,07 |
0,10 |
0,08 |
0,06 | |
2,0−5,0 |
0,12 |
0,10 |
0,15 |
0,12 |
0,09 | |
5,0−10,0 |
0,16 | 0,13 | 0,20 | 0,16 | 0,12 | |
Nickel |
0,010−0,020 |
0,004 |
0,003 |
0,005 |
0,005 |
0,003 |
0,020−0,050 |
0,008 |
0,007 |
0,010 |
0,008 |
0,006 | |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,013 |
0,009 | |
0,10−0,20 |
0,016 |
0,013 |
0,020 |
0,018 |
0,012 | |
0,20−0,50 |
0,03 |
0,03 |
0,04 |
0,03 |
0,02 | |
0,50−1,00 |
0,06 |
0,05 |
0,07 |
0,06 |
0,04 | |
Of 1.00−2,0 |
0,08 |
0,07 |
0,10 |
0,08 |
0,06 | |
2,0−5,0 |
0,12 |
0,10 |
0,15 |
0,12 |
0,09 | |
5,0−10,0 |
0,16 | 0,13 | 0,20 | 0,16 | 0,12 | |
Cobalt |
0,010−0,020 |
0,004 |
0,003 |
0,005 |
0,005 |
0,003 |
0,020−0,050 |
0,006 |
0,005 |
0,007 |
0,007 |
0,004 | |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,013 |
0,009 | |
0,10−0,20 |
0,016 |
0,013 |
0,020 |
0,018 |
0,012 | |
0,20−0,50 |
0,03 |
0,03 |
0,04 |
0,03 |
0,02 | |
0,50−1,00 |
0,05 |
0,04 |
0,06 |
0,05 |
0,04 | |
Of 1.00−2,0 |
0,08 |
0,07 |
0,10 |
0,08 |
0,06 | |
2,0−5,0 |
0,12 | 0,10 | 0,15 | 0,12 | 0,09 | |
Copper |
0,010−0,020 |
0,004 |
0,003 |
0,005 |
0,005 |
0,003 |
0,020−0,050 |
0,008 |
0,007 |
0,010 |
0,009 |
0,006 | |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,014 |
0,009 | |
0,10−0,20 |
0,020 |
0,017 |
0,025 |
0,023 |
0,015 | |
0,20−0,50 |
0,03 |
0,03 |
0,04 |
0,04 |
0,02 | |
0,50−1,00 |
0,06 |
0,05 |
0,07 |
0,06 |
0,04 | |
Of 1.00−2,0 |
0,08 | 0,07 | 0,10 | 0,09 | 0,06 | |
Aluminium |
0,005−0,010 |
0,003 |
0,003 |
0,004 |
0,004 |
0,002 |
0,010−0,020 |
0,006 |
0,005 |
0,007 |
0,006 |
0,004 | |
0,020−0,050 |
0,012 |
0,010 |
0,015 |
0,012 |
0,009 | |
0,050−0,10 |
0,020 |
0,017 |
0,025 |
0,022 |
0,015 | |
0,10−0,20 |
0,03 |
0,03 |
0,04 |
0,04 |
0,02 | |
0,20−0,50 |
0,05 |
0,04 |
0,06 |
0,06 |
0,04 | |
0,50−1,00 |
0,08 |
0,07 |
0,10 |
0,09 |
0,06 | |
Of 1.00−2,0 |
0,12 | 0,10 | 0,15 | 0,13 | 0,09 | |
Arsenic |
0,005−0,010 |
0,002 |
0,002 |
0,003 |
0,003 |
0,002 |
0,010−0,020 |
0,003 |
0,003 |
0,004 |
0,004 |
0,002 | |
0,020−0,050 |
0,006 |
0,005 |
0,007 |
0,007 |
0,004 | |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,015 |
0,009 | |
0,10−0,20 |
0,016 | 0,013 | 0,020 | 0,020 | 0,012 | |
Molybdenum |
0,010−0,020 |
0,004 |
0,003 |
0,005 |
0,005 |
0,003 |
0,020−0,050 |
0,008 |
0,007 |
0,010 |
0,009 |
0,006 | |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,013 |
0,009 | |
0,10−0,20 |
0,016 |
0,013 |
0,020 |
0,019 |
0,012 | |
0,20−0,50 |
0,03 |
0,03 |
0,04 |
0,04 |
0,02 | |
0,50−1,00 |
0,05 |
0,04 |
0,06 |
0,05 |
0,04 | |
Of 1.00−2,0 |
0,08 |
0,07 |
0,10 |
0,08 |
0,06 | |
2,0−5,0 |
0,12 | 0,10 | 0,15 | 0,13 | 0,09 | |
Tungsten |
0,020−0,050 |
0,008 |
0,007 |
0,010 |
0,010 |
0,006 |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,016 |
0,009 | |
0,10−0,20 |
0,020 |
0,017 |
0,025 |
0,025 |
0,015 | |
0,20−0,50 |
0,03 |
0,03 |
0,04 |
0,04 |
0,02 | |
0,50−1,00 |
0,06 |
0,05 |
0,08 |
0,07 |
0,05 | |
Of 1.00−2,0 |
0,12 |
0,10 |
0,15 |
0,12 |
0,09 | |
2,0−5,0 |
0,16 | 0,13 | 0,20 | 0,17 | 0,12 | |
Vanadium |
0,005−0,010 |
0,002 |
0,002 |
0,003 |
0,003 |
0,002 |
0,010−0,020 |
0,004 |
0,003 |
0,005 |
0,005 |
0,003 | |
0,020−0,050 |
0,008 |
0,007 |
0,010 |
0,009 |
0,006 | |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,014 |
0,009 | |
0,10−0,20 |
0,016 |
0,013 |
0,020 |
0,020 |
0,012 | |
0,20−0,50 |
0,03 |
0,03 |
0,04 |
0,04 |
0,02 | |
0,50−1,00 |
0,05 |
0,04 |
0,06 |
0,05 |
0,04 | |
Of 1.00−2,0 |
0,08 |
0,07 |
0,10 |
0,09 |
0,06 | |
2,0−5,0 |
0,12 | 0,10 | 0,15 | 0,13 | 0,09 | |
Titan |
0,005−0,010 |
0,004 |
0,003 |
0,005 |
0,004 |
0,003 |
0,010−0,020 |
0,008 |
0,007 |
0,010 |
0,008 |
0,006 | |
0,020−0,050 |
0,012 |
0,010 |
0,015 |
0,012 |
0,009 | |
0,050−0,10 |
0,016 |
0,013 |
0,020 |
0,017 |
0,012 | |
0,10−0,20 |
0,03 |
0,03 |
0,04 |
0,03 |
0,02 | |
0,20−0,50 |
0,05 |
0,04 |
0,06 |
0,05 |
0,04 | |
0,50−1,00 |
0,08 |
0,07 |
0,10 |
0,08 |
0,06 | |
Of 1.00−2,0 |
0,12 | 0,10 | 0,15 | 0,12 | 0,09 | |
Niobium |
0,010−0,020 |
0,004 |
0,003 |
0,005 |
0,005 |
0,003 |
0,020−0,050 |
0,008 |
0,007 |
0,010 |
0,009 |
0,006 | |
0,050−0,10 |
0,016 |
0,013 |
0,020 |
0,017 |
0,012 | |
0,10−0,20 |
0,024 |
0,020 |
0,03 |
0,03 |
0,018 | |
0,20−0,50 |
0,04 |
0,03 |
0,05 |
0,04 |
0,03 | |
0,50−1,00 |
0,08 |
0,07 |
0,10 |
0,08 |
0,06 | |
Of 1.00−2,0 |
0,12 | 0,10 | 0,15 | 0,12 | 0,09 | |
Bor |
0,001−0,002 |
0,001 |
0,001 |
0,001 |
0,001 |
0,001 |
0,002−0,005 |
0,002 |
0,001 |
0,002 |
0,002 |
0,001 | |
0,005−0,010 |
0,003 |
0,003 |
0,004 |
0,003 |
0,002 | |
0,010−0,020 |
0,005 |
0,004 |
0,006 |
0,005 |
0,004 | |
0,020−0,050 |
0,008 |
0,007 |
0,010 |
0,008 |
0,006 | |
0,050−0,10 |
0,012 | 0,010 | 0,015 | 0,013 | 0,009 | |
Cubic Zirconia |
0,005−0,010 |
0,002 |
0,002 |
0,003 |
0,003 |
0,002 |
0,010−0,020 |
0,004 |
0,003 |
0,005 |
0,005 |
0,003 | |
0,020−0,050 |
0,007 |
0,005 |
0,008 |
0,008 |
0,005 | |
0,050−0,10 |
0,012 |
0,010 |
0,015 |
0,013 |
0,009 | |
0,10−0,20 |
0,016 |
0,013 |
0,020 |
0,018 |
0,012 | |
0,20−0,50 |
0,020 | 0,017 | 0,025 | 0,025 | 0,015 |
7.3.3 If exceeds the allowable value (table 1), the measurement is repeated in accordance with
7.3.4 Extraordinary stability control is carried out after the repair or maintenance of the PV plant.
7.3.5 When operational, calibrated stability control is not carried out.
7.3.6 For installations, interfaced with a computer, the control procedure stability is determined by the software. The accuracy of the results of the analysis shall meet the requirements of this standard.
7.4 Control of reproducibility of analysis results
7.4.1 Control the reproducibility of the spectral analysis is performed by determining a mass fraction of elements in the previously analyzed samples.
7.4.2 the Number of re-definitions should be not less than 0.3% of the total number of definitions for a controlled period.
7.4.3 Repeatability is considered satisfactory if the number of differences of initial and repeat analysis exceeds the allowable value (table 1) is not more than 5% of the number of monitored results.
7.5 verification of correct results of analysis
7.5.1 Control of correctness is carried out by selective comparison of the results of spectral analysis of samples with chemical analysis results, perform standardized or certified methods.
7.5.2 the Number of results in the control of accuracy must be not less than 0.3% of the total number of definitions for a controlled period.
7.5.3 measurement Accuracy is considered satisfactory if the number of discrepancies between the results of spectral and chemical analysis in excess of the allowable value (table 1) is not more than 5% of the number of monitored results.
7.5.4 allowed to inspect the correctness of the method of spectral analysis based on playback the values of the mass fractions of elements in the enterprise.
7.6 to meet the requirements of this standard error of the result of the analysis (at p = 0.95) must not exceed limit values (table 1).
Annex a (recommended). Terms of conducting analysis on photovoltaic installations
APPENDIX A
(recommended)
Table A. 1
Controlled parameter | Air photovoltaic installation |
Spectrometers FES-1 and PSPA, generators, geu-1 and IVS-28. Alternating current arc | ||
DFS-1Ω. Generator powerplant-1 |
MFS-4 and MFS-6. Generator ARKUS | DFS-36. Generator UGE-4 |
||
Voltage, V |
220 |
220 |
The modes of the generator: |
220 |
DC-arc from 1.5 to 20 A; |
||||
alternating current arc different duty cycle and polarity from 1.5 to 20 A; |
||||
the low spark of 250−300 V; |
||||
high-voltage spark from 7500 to 15000; |
||||
pulse discharge of large capacity |
||||
Frequency, Hz |
50 |
50 |
- |
50 |
The strength of the current, And |
1,5−5,0 |
1,5−5,0 |
1,5−2,0 | 1,5−5,0 |
The analytical gap, mm |
1,5−2,0 |
1,5−2,0 |
- | 1,5−2,0 |
Width of output slit, mm |
Of 0.05 and 0.10 |
0,04; 0,075; 0,10 |
Of 0.05 and 0.10 |
0,02−0,04 |
Time roasting |
5−10 |
5−10 |
5−10 |
5−10 |
The exposure time, with |
20−30 |
20−30 |
20−30 |
20−30 |
Electrodes |
Use copper rods with a diameter of 6 mm and carbon rods stamps-3. The rods are sharpened to a hemisphere with a radius of curvature of 3−4 mm or on a truncated cone at an angle 45−90° with the diameter of the via pad 1.5−2.0 mm | |||
Note — the Parameters are selected within the specified values |
Table A. 2
Controlled parameter |
Vacuum photovoltaic installation | ||||
DFS-41. Generator IVS-2. High volt spark |
ARL 3100 |
Polyvac E-600 | |||
Generator Polishers |
Generator Minicars P. Low volt arc |
Generator FS 139. Low volt arc | |||
High volt spark |
Low volt spark |
||||
Voltage, V |
650 |
15000 |
600−1000 |
500 and 800 |
500 |
Capacitance, µf |
8−24 |
7,5·10 |
15 |
10 |
10−20 |
Inductance, µh |
10−500 |
0 and 3600 |
50 and 360 |
20 |
60 and 560 |
Frequency, Hz |
50 and 150 |
100 |
50 |
50 and 100 |
50 |
Resistance, Ohm |
0,1−16,9 |
- |
Of 0.2 and 18.0 |
0 and 2.2 |
Of 0.1 and 3.0 |
Width of output slit, mm |
0,04; 0,075; 0,10 |
- |
0,038; 0,05; 0,075 | - |
- |
Time purging the chamber with argon, |
- |
- |
10−15 |
- |
- |
The analytical gap, mm |
- |
- |
5,0 |
- |
- |
Purging the chamber with argon, l/min |
- |
- |
4−6 |
- |
- |
Time roasting |
7−20 |
10 |
20 |
20 |
20 |
The exposure time, with |
7−20 |
10 |
20 |
10 and 20 |
10 and 20 |
Electrodes |
Use bars of silver, copper and tungsten with a diameter of 5−6 mm, sharpened to a cone of 90°, or tungsten wire with 1−2 mm in diameter, sharpened on the plane | ||||
Note — the Parameters are selected within the specified values |
Table A. 3
The designated element |
The wavelength of the element, nm |
A disturbing element |
The range of values of the mass fraction of elements, % |
Carbon |
193,09 |
- | 0,010−2,0 |
229,69 |
Iron |
0,050−2,0 | |
426,73 |
- | 0,020−2,0 | |
Sulfur |
180,73 |
Nickel |
Of 0.002 to 0.20 |
182,04 |
- |
Of 0.002 to 0.20 | |
481,55 |
- |
Of 0.002 to 0.20 | |
545,39 |
- | Of 0.002 to 0.20 | |
Phosphorus |
177,50 |
- | Of 0.002 to 0.20 |
178,29 |
Carbon |
Of 0.002 to 0.20 | |
214,91 |
Iron, tungsten | Of 0.002 to 0.20 | |
Silicon |
181,69 |
- | 0,10−2,5 |
185,07 |
- |
Of 0.010 to 1.00 | |
198,84 |
- |
0,010−2,5 | |
212,41 |
- |
0,010−2,5 | |
243,52 |
Iron, tungsten |
0,10−2,5 | |
250,69 |
Iron, vanadium |
0,010−1,5 | |
251,61 |
Vanadium |
0,010−1,5 | |
288,16 |
- |
0,010−2,0 | |
390,55 |
- | 0,050−2,5 | |
Manganese |
192,13 |
- | 0,010−10,0 |
263,82 |
- |
0,10−3,0 | |
293,31 |
- |
0,005−5,0 | |
294,92 |
- |
0,050−3,0 | |
478,34 |
- |
0,050−3,0 | |
482,35 |
- | 0,050−3,0 | |
Chrome |
205,56 |
- |
0,010−5,0 |
206,55 |
Tungsten |
0,010−5,0 | |
267,72 |
Tungsten |
0,005−5,0 | |
275,29 |
Tungsten |
0,010−5,0 | |
279,22 |
Tungsten |
Of 0.20 to 5.0 | |
298,92 |
Vanadium |
3,0−30,0 | |
314,72 |
Cobalt, tungsten |
0,10−5,0 | |
425,43 |
- |
0,10−5,0 | |
462,62 |
- |
0,010−2,0 | |
520,60 |
Tungsten |
0,010−2,0 | |
534,58 |
- | 0,050−5,0 | |
Nickel |
218,55 |
Tungsten |
3,0−30,0 |
225,39 |
- |
0,010−5,0 | |
227,02 |
- |
0,010−5,0 | |
231,60 |
- |
0,005−5,0 | |
231,72 |
Iron |
0,005−5,0 | |
309,71 |
Manganese, titanium |
0,050−5,0 | |
341,48 |
- |
Of 0.010 to 1.00 | |
351,51 |
- |
Of 0.010 to 1.00 | |
376,95 |
Titan |
3,0−30,0 | |
385,83 |
- |
0,010−2,0 | |
388,97 |
Niobium, molybdenum |
3,0−30,0 | |
390,71 |
Titanium, molybdenum |
3,0−30,0 | |
471,44 |
- | 0,050−5,0 | |
Copper |
200,04 |
- |
0,001−5,0 |
211,21 |
- |
0,20−2,0 | |
219,23 |
- |
0,010−2,0 | |
223,01 |
- |
0,10−2,0 | |
224,26 |
- |
0,10−2,0 | |
282,44 |
- |
0,050−2,0 | |
324,75 |
Niobium, manganese |
0,010−2,0 | |
327,40 |
Niobium |
0,005−5,0 | |
510,55 |
Tungsten | 0,010−2,0 | |
Aluminium |
186,28 |
- |
0,0005−5,0 |
199,05 |
- |
Of 0.005 to 1.00 | |
257,51 |
- |
Of 0.010 to 1.00 | |
308,22 |
Vanadium |
Of 0.010 to 1.00 | |
394,40 |
- |
0,005−0,50 | |
396,15 |
Molybdenum, zirconium | 0,001−5,0 | |
Arsenic |
189,04 |
Carbon, silicon |
Of 0.005 to 0.20 |
193,76 |
- |
Of 0.005 to 0.20 | |
197,26 |
- |
Of 0.005 to 0.20 | |
234,98 |
Vanadium |
0,010−0,20 | |
286,05 |
- | 0,020−0,20 | |
Molybdenum |
202,03 |
Iron |
Of 0.002 to 5.0 |
281,62 |
Aluminium |
0,050−5,0 | |
317,04 |
Iron |
0,010−2,0 | |
386,41 |
- |
0,010−2,0 | |
476,02 |
- |
0,10−5,0 | |
553,31 |
Tungsten |
0,10−5,0 | |
603,07 |
- | 0,10−5,0 | |
Tungsten |
202,92 |
- |
0,10−5,0 |
207,91 |
- |
0,050−5,0 | |
209,86 |
- |
0,10−5,0 | |
220,45 |
Aluminium |
0,050−5,0 | |
239,71 |
- |
0,10−5,0 | |
258,69 |
- | 0,10−5,0 | |
330,00 |
Iron |
0,10−5,0 | |
364,65 |
Vanadium |
0,10−5,0 | |
400,88 |
Iron, titanium |
0,020−5,0 | |
465,99 |
- |
0,020−5,0 | |
484,35 |
- | 0,10−5,0 | |
Vanadium |
214,01 |
- |
0,10−5,0 |
266,33 |
Lead |
0,10−5,0 | |
271,57 |
Tungsten, niobium |
0,010−5,0 | |
290,82 |
- |
Of 0.002 to 5.0 | |
311,07 |
Titanium, iron |
0,001−5,0 | |
311,84 |
- |
0,010−0,50 | |
312,29 |
- |
0,010−2,5 | |
313,03 |
Tungsten |
0,010−0,50 | |
411,18 |
Chrome |
0,10−2,5 | |
437,92 |
- | 0,010−2,5 | |
Titan |
190,80 |
- |
0,005−0,50 |
316,85 |
- |
Of 0.005−2.0 | |
324,20 |
- |
Of 0.005−2.0 | |
334,94 |
Niobium |
Of 0.005−2.0 | |
337,28 |
Niobium |
0,001−5,0 | |
363,55 |
- |
0,030−2,0 | |
453,32 |
- | Of 0.005−2.0 | |
Niobium |
212,65 |
- |
0,10−2,0 |
295,09 |
- |
0,020−2,0 | |
309,42 |
Vanadium, tungsten |
0,020−2,0 | |
319,50 |
Copper |
Of 0.003 to 5.0 | |
320,64 |
Tungsten, chromium |
0,10−2,0 | |
351,54 |
Nickel |
0,020−2,0 | |
358,03 |
- |
0,020−2,0 | |
372,05 |
Tungsten, iron |
0,10−2,0 | |
410,09 |
Iron |
0,020−2,0 | |
534,42 |
- | 0,020−2,0 | |
Bor |
182,59 |
- |
0,001−0,10 |
208,96 |
- |
0,001−0,10 | |
249,68 |
Tungsten, iron | 0,001−0,10 | |
Cubic Zirconia |
257,13 |
Copper |
0,005−0,50 |
339,19 |
Chrome |
0,005−0,50 | |
343,82 |
- |
Of 0.005 to 1.00 | |
360,12 |
- | 0,010−0,50 | |
Cobalt |
228,62 |
Iron |
0,010−2,0 |
248,34 |
Molybdenum |
0,40−4,0 | |
340,51 |
Vanadium, molybdenum, titanium |
0,010−2,0 | |
341,23 |
Niobium, molybdenum |
0,010−2,0 | |
345,35 |
Cerium, molybdenum, vanadium |
0,010−2,0 | |
346,28 |
Chrome, Nickel |
0,010−2,0 | |
373,59 |
Molybdenum, vanadium |
2,0−10,0 | |
374,99 |
Cerium, arsenic |
2,0−10,0 | |
384,55 |
Vanadium, zirconium | 2,0−10,0 | |
Iron |
187,75 |
- |
Line comparison |
241,33 |
- |
||
249,33 |
- |
||
262,83 |
Tungsten |
||
271,44 |
Cobalt, vanadium |
||
272,02 |
Tungsten |
||
281,33 |
- | ||
282,33 |
- |
||
297,01 |
- |
||
300,96 |
- |
||
309,16 |
- |
||
438,35 |
- |
||
440,48 |
- |
||
447,60 |
- |
||
Note — Lines are selected specifically for analytical methods depending on their intensity, type of photovoltaic installation overlay other lines, the possibility of placing the output slots on the carriages of the device |