By visiting this site, you accept the use of cookies. More about our cookie policy.

GOST 16412.7-91

GOST R ISO 15353-2014 GOST P 55080-2012 GOST R ISO 16962-2012 GOST R ISO 10153-2011 GOST R ISO 10280-2010 GOST R ISO 4940-2010 GOST R ISO 4943-2010 GOST R ISO 14284-2009 GOST R ISO 9686-2009 GOST R ISO 13899-2-2009 GOST 18895-97 GOST 12361-2002 GOST 12359-99 GOST 12358-2002 GOST 12351-2003 GOST 12345-2001 GOST 12344-88 GOST 12350-78 GOST 12354-81 GOST 12346-78 GOST 12353-78 GOST 12348-78 GOST 12363-79 GOST 12360-82 GOST 17051-82 GOST 12349-83 GOST 12357-84 GOST 12365-84 GOST 12364-84 STATE STANDARD P 51576-2000 GOST 29117-91 GOST 12347-77 GOST 12355-78 GOST 12362-79 GOST 12352-81 GOST P 50424-92 STATE STANDARD P 51056-97 GOST P 51927-2002 GOST P 51928-2002 GOST 12356-81 GOST R ISO 13898-1-2006 GOST R ISO 13898-3-2007 GOST R ISO 13898-4-2007 GOST R ISO 13898-2-2006 STATE STANDARD P 52521-2006 GOST P 52519-2006 GOST R 52520-2006 GOST P 52518-2006 GOST 1429.14-2004 GOST 24903-81 GOST 22662-77 GOST 6012-2011 GOST 25283-93 GOST 18318-94 GOST 29006-91 GOST 16412.4-91 GOST 16412.7-91 GOST 25280-90 GOST 2171-90 GOST 23401-90 GOST 30642-99 GOST 25698-98 GOST 30550-98 GOST 18898-89 GOST 26849-86 GOST 26876-86 GOST 26239.5-84 GOST 26239.7-84 GOST 26239.3-84 GOST 25599.4-83 GOST 12226-80 GOST 23402-78 GOST 1429.9-77 GOST 1429.3-77 GOST 1429.5-77 GOST 19014.3-73 GOST 19014.1-73 GOST 17235-71 GOST 16412.5-91 GOST 29012-91 GOST 26528-98 GOST 18897-98 GOST 26529-85 GOST 26614-85 GOST 26239.2-84 GOST 26239.0-84 GOST 26239.8-84 GOST 25947-83 GOST 25599.3-83 GOST 22864-83 GOST 25599.1-83 GOST 25849-83 GOST 25281-82 GOST 22397-77 GOST 1429.11-77 GOST 1429.1-77 GOST 1429.13-77 GOST 1429.7-77 GOST 1429.0-77 GOST 20018-74 GOST 18317-94 STATE STANDARD P 52950-2008 GOST P 52951-2008 GOST 32597-2013 GOST P 56307-2014 GOST 33731-2016 GOST 3845-2017 STATE STANDARD P ISO 17640-2016 GOST 33368-2015 GOST 10692-2015 GOST P 55934-2013 GOST P 55435-2013 STATE STANDARD P 54907-2012 GOST 3845-75 GOST 11706-78 GOST 12501-67 GOST 8695-75 GOST 17410-78 GOST 19040-81 GOST 27450-87 GOST 28800-90 GOST 3728-78 GOST 30432-96 GOST 8694-75 GOST R ISO 10543-99 GOST R ISO 10124-99 GOST R ISO 10332-99 GOST 10692-80 GOST R ISO 17637-2014 GOST P 56143-2014 GOST R ISO 16918-1-2013 GOST R ISO 14250-2013 GOST P 55724-2013 GOST R ISO 22826-2012 GOST P 55143-2012 GOST P 55142-2012 GOST R ISO 17642-2-2012 GOST R ISO 17641-2-2012 GOST P 54566-2011 GOST 26877-2008 GOST R ISO 17641-1-2011 GOST R ISO 9016-2011 GOST R ISO 17642-1-2011 STATE STANDARD P 54790-2011 GOST P 54569-2011 GOST P 54570-2011 STATE STANDARD P 54153-2010 GOST R ISO 5178-2010 GOST R ISO 15792-2-2010 GOST R ISO 15792-3-2010 GOST P 53845-2010 GOST R ISO 4967-2009 GOST 6032-89 GOST 6032-2003 GOST 7566-94 GOST 27809-95 GOST 22974.9-96 GOST 22974.8-96 GOST 22974.7-96 GOST 22974.6-96 GOST 22974.5-96 GOST 22974.4-96 GOST 22974.3-96 GOST 22974.2-96 GOST 22974.1-96 GOST 22974.13-96 GOST 22974.12-96 GOST 22974.11-96 GOST 22974.10-96 GOST 22974.0-96 GOST 21639.9-93 GOST 21639.8-93 GOST 21639.7-93 GOST 21639.6-93 GOST 21639.5-93 GOST 21639.4-93 GOST 21639.3-93 GOST 21639.2-93 GOST 21639.0-93 GOST 12502-67 GOST 11878-66 GOST 1763-68 GOST 13585-68 GOST 16971-71 GOST 21639.10-76 GOST 2604.1-77 GOST 11930.7-79 GOST 23870-79 GOST 11930.12-79 GOST 24167-80 GOST 25536-82 GOST 22536.2-87 GOST 22536.11-87 GOST 22536.6-88 GOST 22536.10-88 GOST 17745-90 GOST 26877-91 GOST 8233-56 GOST 1778-70 GOST 10243-75 GOST 20487-75 GOST 12503-75 GOST 21548-76 GOST 21639.11-76 GOST 2604.8-77 GOST 23055-78 GOST 23046-78 GOST 11930.11-79 GOST 11930.1-79 GOST 11930.10-79 GOST 24715-81 GOST 5639-82 GOST 25225-82 GOST 2604.11-85 GOST 2604.4-87 GOST 22536.5-87 GOST 22536.7-88 GOST 6130-71 GOST 23240-78 GOST 3242-79 GOST 11930.3-79 GOST 11930.5-79 GOST 11930.9-79 GOST 11930.2-79 GOST 11930.0-79 GOST 23904-79 GOST 11930.6-79 GOST 7565-81 GOST 7122-81 GOST 2604.3-83 GOST 2604.5-84 GOST 26389-84 GOST 2604.7-84 GOST 28830-90 GOST 21639.1-90 GOST 5640-68 GOST 5657-69 GOST 20485-75 GOST 21549-76 GOST 21547-76 GOST 2604.6-77 GOST 22838-77 GOST 2604.10-77 GOST 11930.4-79 GOST 11930.8-79 GOST 2604.9-83 GOST 26388-84 GOST 14782-86 GOST 2604.2-86 GOST 21639.12-87 GOST 22536.8-87 GOST 22536.0-87 GOST 22536.3-88 GOST 22536.12-88 GOST 22536.9-88 GOST 22536.14-88 GOST 22536.4-88 GOST 22974.14-90 GOST 23338-91 GOST 2604.13-82 GOST 2604.14-82 GOST 22536.1-88 GOST 28277-89 GOST 16773-2003 GOST 7512-82 GOST 6996-66 GOST 12635-67 GOST 12637-67 GOST 12636-67 GOST 24648-90

GOST 16412.7−91 iron Powder. Methods for determination of carbon


GOST 16412.7−91

Group B59


STATE STANDARD OF THE USSR

IRON POWDER

Methods for determination of carbon

Iron powder.
Methods for the determination of carbon


AXTU 0809

Date of introduction 1992−07−01


INFORMATION DATA

1. DEVELOPED AND INTRODUCED by the Academy of Sciences of the Ukrainian SSR

DEVELOPERS

V. N. Klimenko, PhD. tech. Sciences; A. E. kushchevsky, PhD. chem. Sciences; V. A. Dubok, PhD. chem. Sciences (head of subject); V. I. Kornilov, candidate. chem. Sciences; V. V. Garbuz, PhD. chem. Sciences; L. D. Bernatsky

2. APPROVED AND put INTO EFFECT by Decision of the USSR State Committee on management of quality and standards from 16.05.91 N 692

3. REPLACE GOST 16412.7−80

4. REFERENCE NORMATIVE AND TECHNICAL DOCUMENTS

   
The designation of the reference document referenced Paragraph number section
GOST 4107−78 2.3.1
GOST 4204−77 2.2.1; 2.3.1
GOST 4233−77 2.2.1; 2.3.1
GOST 4470−79 3.2
GOST 5583−78 2.2.1; 2.3.1; 3.2
GOST 9147−80 2.2.1; 2.3.1; 3.2
GOST 20490−75 2.2.1; 2.3.1
GOST 22536.1−88 2.1
GOST 28473−90 Sec. 1



This standard sets by a gas-volume (in mass percentage, carbon between 0.01% and above) and coulometric (with the mass fraction of carbon from 0.002% and above) methods for the determination of the carbohydrate in the iron powder.

1. GENERAL REQUIREMENTS


General requirements for methods of analysis GOST 28473.

2. BY A GAS-VOLUME METHOD FOR DETERMINATION OF CARBON

2.1. The essence of the method

The method is based on the combustion of a sample of iron powder in a current of oxygen at a temperature of 1250−1300 °C with subsequent absorption of that carbon dioxide with a solution of potassium hydroxide (sodium).

The carbon content is determined by the difference between the initial volume and amount of gas obtained after the absorption of carbon dioxide with a solution of potassium hydroxide (sodium).

2.2. Determination of carbon (over 0.05%) with the use of audiometry scale up to 1.5% carbon

2.2.1. Apparatus, reagents and solutions

Setup for determination of carbon, shown in the drawing, consists of an oxygen cylinder equipped with pressure reducing valve and pressure gauge for starting and regulating the current of oxygen is 2; the absorption flask 3 containing a solution of potassium permanganate with a mass fraction of 2% solution of potassium hydroxide with a mass fraction of 20%; a U-shaped tube 4, which in the first half (in the direction of oxygen) soda lime and the second calcium chloride; tap to regulate the flow of purified oxygen 5; mullite refractory-silica tube 6 an inner diameter, determined by the diameter of the used gate and the size of the boat. The ends of the tube protruding from the furnace, must be at least 250 mm. Tube before use, should be burnt along the entire length at a temperature of 1250−1300 °C in flowing oxygen; the horizontal tubular furnace 7 with a carbide-silicon heaters providing heated to 1250−1300 °C, thermostat 8, which maintain constant temperature furnace; voltage regulator 9 (allowed to use other types of kilns that provides the required temperature); two-way tap 10; dust collector 11; 12 filtroperlite filled with manganese dioxide or peroxide granules — for cleaning the products of combustion from the sulfur dioxide; gas analyzer Gow-1, including refrigerator coil 13 for cooling coming from the furnace gas mixture (COГОСТ 16412.7-91 Порошок железный. Методы определения углерода+OГОСТ 16412.7-91 Порошок железный. Методы определения углерода); 14-way tap connecting audiometer with a refrigerator, an absorption vessel and the atmosphere; the single-acting valve 15, connecting audiometer with the atmosphere; audiometry 16, which represents a narrow cylindrical vessel with an extension at the top. Audiometr has double walls, the space between which is filled with water to maintain a constant temperature. At the top of audiometry fortified thermometer 17 for measuring the gas temperature; the narrow part of audiometer has a scale for measuring the volume of gas corresponding to the percentage of carbon in the sample. The tick marks indicate the percentage carbon content of the test specimen. Audiometry graduated to measure the volume of gas at a temperature of 16 or 20 °C and atmospheric pressure 0,101 MPa (760 mm Hg. St). For other conditions introduce a correction for temperature and atmospheric pressure according to the tables of annexes 1 and 2 to GOST 22536.1. Vessel for the absorption of carbon dioxide 18, is filled with a solution of potassium hydroxide (sodium) with a mass fraction of 40% and provided with a slide valve floats, which close the sink when it is filled with alkali solution, eliminating the possibility of contact with the alkali solution from the absorber audiometer. The absorption vessel is connected to the cylindrical vessels, which during the filling of the absorption vessel, a gas mixture is pumped a solution of potassium hydroxide (sodium); equalization flask 19 for transferring the gas mixture from audiometry in the absorption vessel is filled with packing liquid.

ГОСТ 16412.7-91 Порошок железный. Методы определения углерода



Barometer.

Muffle furnace type SNOL according to normative-technical documentation or any other type providing a heating temperature not lower than 900 °C.

The hook with which the boat is introduced into the tube for flaring and extracted from it, is made of heat-resistant low-carbon wire with a diameter of 3−5 mm and a length of 500−600 mm.

Boat porcelain with GOST 9147, calcined at temperatures below 900 °C for 6 h or at operating temperature in flowing oxygen for 2−3 min.

Boats stored in the desiccator, socket covers which do not cover the lubricant.

Oxygen gas according to GOST 5583.

Gas analyzer Gow-1.

The lime soda.

The calcium chloride.

Sulfuric acid according to GOST 4204.

Potassium permanganate according to GOST 20490, solution with a mass fraction of 4% solution of potassium hydroxide with a mass fraction of 40%.

Methyl orange (paradimethylaminobenzaldehyde solitarily sodium), an aqueous solution with a mass fraction of 0.1%.

Sodium chloride according to GOST 4233.

Potassium hydroxide according to GOST 24363, a solution with a mass fraction of 40%.

Packing liquid: sulfuric acid solution with a mass fraction of 2% or solution of sodium chloride with a mass fraction of 25%, acidified with 2−3 drops of sulfuric acid. Both solutions contain 2−3 drops of methyl orange solution.

2.2.2. Preparation for assay

Before commencing work the installing drive. The ends of the porcelain tubes closed with rubber stoppers embedded with glass tubes or shutter. A porcelain tube, all connections and taps installation check for leaks. For this purpose one end of the porcelain tube connecting a rubber hose through absorption banks to clean oxygen with a balloon containing oxygen, a second end with the device go-1.

The absorption vessel is filled with a solution of potassium hydroxide (sodium), and the surge flask are poured 450cmГОСТ 16412.7-91 Порошок железный. Методы определения углеродаpacking liquid. After filling the surge flask with fresh liquid necessary to make a few preliminary burning of the sample began to saturate the liquid with carbon dioxide to obtain stable results for the determination of carbon in the standard sample. Then double tap 14 put in the position that divide the burette, absorption vessel, and a refrigerator among themselves. Opening the valve 15, which connects audiometer with the atmosphere, raise the levelling bottle, eudiometer is filled with fluid. After filling audiometry liquid valve 15 is closed, the crane 14 is put in a situation in which audiometr connects the absorption vessel.

After equalizing the bottle, allow the liquid to drain out of audiometer. The level of alkaline solution in the absorption vessel rises, lifting the float.

As soon as the float will close the exit from the absorption vessel, the crane 14 and the single-acting valve 15 is put in a position in which audiometer is connected with the atmosphere. Raising the levelling bottle, fill eudiometer liquid to the upper limit. After filling audiometry liquid valve 15, connecting it with the atmosphere, closed, and levelling bottle is lowered. If the unit is sealed, the absorption vessel is filled with alkali, and the liquid level in audiometry remains unchanged. If the fluid in audiometry is omitted, then the unit is leaking. It should be disassembled to check the valves, lubricate them with vaseline and check again for leaks.

Before starting work, check correctness of installation of a zero scale division. For this, the crane 14 is put in position, severing all parts of the system. Open the valve 15, which connects audiometer with the atmosphere, the surge put the bottle on the bottom bracket, and give the packing liquid to drain. The level of the sealing liquid in the bottom of audiometry and the surge flask are installed at the same height. The movable scale is moved so that its zero division coincided with the lower level of the packing liquid in eudiometer. Not closing the valve 15, raising the surge bottle on the upper cradle, while eudiometer is filled with packing liquid. The valve 15 is closed.

2.2.3. Analysis

A suspension of iron powder weighing 1 g is placed in a porcelain boat. Audiometer needs to be filled with liquid; the absorption vessel must be filled with a solution of potassium hydroxide (sodium), and the valve 15 must be closed.

The boat with the charge placed in the most heated portion of the porcelain tube, the end of which is closed immediately with a rubber stopper or stopper. After 10−20 s (time required to ensure that the boat and the hitch took the temperature of the furnace) is passed a current of oxygen at a speed of 0.33·10ГОСТ 16412.7-91 Порошок железный. Методы определения углеродаmГОСТ 16412.7-91 Порошок железный. Методы определения углерода/s (200 cmГОСТ 16412.7-91 Порошок железный. Методы определения углерода/min). With the help of a crane 14 for some time, disconnect the refrigerator 13 and audiometr 16 to start the combustion took place under a certain pressure of oxygen, then the crane 14 is put in a position in which the gas mixture enters audiometer. The surge put the bottle on the stand, in the upper part of the detector. In this position, the surge bottle leave until then, until the mixture to displace the liquid from the upper wide part of audiometry. Then the surge bottle is put on the stand in the down position and leave as long as the fluid level in audiometry falls almost to zero scale division; immediately cease the supply of oxygen, choking off the faucet 14. Simultaneously stop the flow of oxygen from a cylinder. Then disconnect the plug with the porcelain tube and the tube is removed from the boat. The fluid level in audiometry set at the zero division of the scale, the level in audiometry should be on the same line as the liquid level in the surge bottle. Then, changing the position of the valve 14, the gas mixture (COГОСТ 16412.7-91 Порошок железный. Методы определения углерода+OГОСТ 16412.7-91 Порошок железный. Методы определения углерода) from audiometer transferred to the absorber 18. From the absorber 18, the remaining gas is again pumped into the burette 16; this operation is repeated. Then set the tap 14 in a position of complete separation audiometry absorbent and measure the volume of gas in eudiometry. To this end, the liquid in the surge flask and eudiometer set on one level and provide exposure 20, to drain the liquid remaining on the walls of audiometry. Call meniscus and scale audiometry determine the amount of carbon dioxide absorbed is proportional to the carbon content in the analyzed material. Note the temperature of the gas in the burette and the atmospheric pressure on the barometer. Then release the gas from the burette and prepare the apparatus for subsequent incineration.

2.2.4. Processing of the results

2.2.4.1. After completion of the analysis tables 1 and 2 GOST 22536.1 find a correction for temperature and pressure at which the was measured of carbon.

Mass fraction of carbon (ГОСТ 16412.7-91 Порошок железный. Методы определения углерода) in percent is calculated by the formula

ГОСТ 16412.7-91 Порошок железный. Методы определения углерода,


where ГОСТ 16412.7-91 Порошок железный. Методы определения углерода — indications of the scale of audiometry after the absorption of carbon dioxide from the combustion of a sample of iron powder, %;

ГОСТ 16412.7-91 Порошок железный. Методы определения углерода — indications of the scale of audiometry after absorption of carbon dioxide produced when conducting the reference experiment, %;

ГОСТ 16412.7-91 Порошок железный. Методы определения углерода — the weight of the portion at which the calibrated device, g;

ГОСТ 16412.7-91 Порошок железный. Методы определения углерода — correction factor for temperature and pressure;

ГОСТ 16412.7-91 Порошок железный. Методы определения углерода — weight of iron powder,

2.2.4.2. Allowable absolute differences of the results of the parallel definitions should not exceed the values given in the table.

   
Mass fraction of carbon, % Allowable absolute differences, %
From 0.002 to 0.005 incl. 0,001
SV. 0,005 «0,01 « 0,002
«0,01» 0,02 « 0,004
«0,02» 0,05 « 0,007
«0,05» 0,10 « 0,010
«To 0.10» to 0.20 « 0,015
«To 0.20» and 0.40 « 0,020

2.3. Determination of carbon (0,01−0,2%) with the use of audiometry scale to 0.25% carbon

2.3.1. Apparatus, reagents and solutions

Equipment, reagents, solutions and diagram of the installation according to claim 2.2.1 with additions.

Electric dubtronica.

Tube mullite refractory-silica, with a length of 750 mm, the inner diameter defined by the diameter of the used gate and the size of the boat. One of them is used for purification of oxygen impurities containing carbon, the other for the combustion of batches.

For cleaning of gases from the first tube, are the two washings of the flask: with a solution of barium hydroxide with a mass fraction of 5% for the absorption of carbon dioxide contained in the technical oxygen, with concentrated sulfuric acid to absorb moisture.

Audiometer with scale 0,25% of carbon.

Equalization flask with side tube.

Barium hydroxide according to GOST 4107, a solution with a mass fraction of 5%.

2.3.2. Training equipment

Before commencing work the installing drive. The ends of the porcelain tubes closed with rubber stoppers embedded with glass tubes or shutter. One end of the porcelain tube, intended for the purification of oxygen impurities containing carbon, connect a rubber hose through cleaning bottles with the oxygen tank, the other end through the flask for purification of gases connected to one end of the porcelain tube that is designed to burn batches. The second end of the tube to burn through a rubber hose connected to the gas analyzer Gow-1. After that, the installation check for leaks at the operating temperature according to claim 2.2.2.

2.3.3. Analysis

A suspension of iron powder weighing 1 g is placed in a porcelain boat and carry out the analysis according to claim 2.2.3.

2.3.4. Processing of the results

2.3.4.1. Processing of the results produced as specified in claim 2.2.4.

2.3.4.2. Allowable absolute differences of the results of the parallel definitions should not exceed the values given in the table.

3. COULOMETRIC METHOD FOR DETERMINING CARBON

3.1. The essence of the method

The method is based on the combustion of a sample of iron powder in a current of oxygen at a temperature of 1300−1350 °C. the Resulting carbon dioxide is absorbed by the solution and causes an increase of acidity and the change in the EMF indicator system pH meter. The quantity of electricity necessary to achieve the initial pH of the absorbing solution and is proportional to the concentration of carbon in the sample, fixed colorometer integrator current, showing directly the amount of carbon in percent.

3.2. Equipment and reagents

Coulometric installing an 7529, 7560 EN with all accessories or any other type, providing the necessary accuracy of the analysis.

Horizontal tube furnace of any type, providing heating to a temperature of 1350 °C.

Oxygen GOST 5583.

Tube mullite refractory-silica with an inner diameter defined by the diameter of the used gate and the size of the boat.

Muffle furnace type SNOL according to normative-technical documentation or any other type providing a heating temperature not lower than 900 °C.

Boat porcelain with GOST 9147, calcined at temperatures below 900 °C for 6 h or at operating temperature in flowing oxygen for 2−3 min.

Boats stored in the desiccator, socket covers which do not cover the lubricant. In the determination of carbon less than 0.05% boats should be svezheprigotovlennym.

Manganese dioxide according to GOST 4470.

Gidroperit according to normative-technical documentation.

Absorption and support the solutions prepared in accordance with the type of the used coulometric setup.

3.3. Analysis

Device prepare to work in accordance with the instructions.

The weight of iron powder with a mass of 0.5−1.0 g is transferred into a porcelain boat; the boat is placed in the most heated portion of the porcelain tube for the combustion, which quickly close the shutter. Press the «reset» button and set the display indication the digital display to «zero», burn iron powder at a temperature of 1250−1300 °C. After complete combustion of the iron powder, what is judged by the completion of the titration, record the result of the analysis by reading the digital display, open the stopper and remove the boat.

3.4. Processing of the results

3.4.1. Mass fraction of carbon is determined by the digital display of the analyzer minus the result of the reference experiment.

3.4.2. Allowable absolute differences of the results of the parallel definitions should not exceed the values given in the table.