By visiting this site, you accept the use of cookies. More about our cookie policy.

GOST 18897-98

GOST R ISO 15353-2014 GOST P 55080-2012 GOST R ISO 16962-2012 GOST R ISO 10153-2011 GOST R ISO 10280-2010 GOST R ISO 4940-2010 GOST R ISO 4943-2010 GOST R ISO 14284-2009 GOST R ISO 9686-2009 GOST R ISO 13899-2-2009 GOST 18895-97 GOST 12361-2002 GOST 12359-99 GOST 12358-2002 GOST 12351-2003 GOST 12345-2001 GOST 12344-88 GOST 12350-78 GOST 12354-81 GOST 12346-78 GOST 12353-78 GOST 12348-78 GOST 12363-79 GOST 12360-82 GOST 17051-82 GOST 12349-83 GOST 12357-84 GOST 12365-84 GOST 12364-84 STATE STANDARD P 51576-2000 GOST 29117-91 GOST 12347-77 GOST 12355-78 GOST 12362-79 GOST 12352-81 GOST P 50424-92 STATE STANDARD P 51056-97 GOST P 51927-2002 GOST P 51928-2002 GOST 12356-81 GOST R ISO 13898-1-2006 GOST R ISO 13898-3-2007 GOST R ISO 13898-4-2007 GOST R ISO 13898-2-2006 STATE STANDARD P 52521-2006 GOST P 52519-2006 GOST R 52520-2006 GOST P 52518-2006 GOST 1429.14-2004 GOST 24903-81 GOST 22662-77 GOST 6012-2011 GOST 25283-93 GOST 18318-94 GOST 29006-91 GOST 16412.4-91 GOST 16412.7-91 GOST 25280-90 GOST 2171-90 GOST 23401-90 GOST 30642-99 GOST 25698-98 GOST 30550-98 GOST 18898-89 GOST 26849-86 GOST 26876-86 GOST 26239.5-84 GOST 26239.7-84 GOST 26239.3-84 GOST 25599.4-83 GOST 12226-80 GOST 23402-78 GOST 1429.9-77 GOST 1429.3-77 GOST 1429.5-77 GOST 19014.3-73 GOST 19014.1-73 GOST 17235-71 GOST 16412.5-91 GOST 29012-91 GOST 26528-98 GOST 18897-98 GOST 26529-85 GOST 26614-85 GOST 26239.2-84 GOST 26239.0-84 GOST 26239.8-84 GOST 25947-83 GOST 25599.3-83 GOST 22864-83 GOST 25599.1-83 GOST 25849-83 GOST 25281-82 GOST 22397-77 GOST 1429.11-77 GOST 1429.1-77 GOST 1429.13-77 GOST 1429.7-77 GOST 1429.0-77 GOST 20018-74 GOST 18317-94 STATE STANDARD P 52950-2008 GOST P 52951-2008 GOST 32597-2013 GOST P 56307-2014 GOST 33731-2016 GOST 3845-2017 STATE STANDARD P ISO 17640-2016 GOST 33368-2015 GOST 10692-2015 GOST P 55934-2013 GOST P 55435-2013 STATE STANDARD P 54907-2012 GOST 3845-75 GOST 11706-78 GOST 12501-67 GOST 8695-75 GOST 17410-78 GOST 19040-81 GOST 27450-87 GOST 28800-90 GOST 3728-78 GOST 30432-96 GOST 8694-75 GOST R ISO 10543-99 GOST R ISO 10124-99 GOST R ISO 10332-99 GOST 10692-80 GOST R ISO 17637-2014 GOST P 56143-2014 GOST R ISO 16918-1-2013 GOST R ISO 14250-2013 GOST P 55724-2013 GOST R ISO 22826-2012 GOST P 55143-2012 GOST P 55142-2012 GOST R ISO 17642-2-2012 GOST R ISO 17641-2-2012 GOST P 54566-2011 GOST 26877-2008 GOST R ISO 17641-1-2011 GOST R ISO 9016-2011 GOST R ISO 17642-1-2011 STATE STANDARD P 54790-2011 GOST P 54569-2011 GOST P 54570-2011 STATE STANDARD P 54153-2010 GOST R ISO 5178-2010 GOST R ISO 15792-2-2010 GOST R ISO 15792-3-2010 GOST P 53845-2010 GOST R ISO 4967-2009 GOST 6032-89 GOST 6032-2003 GOST 7566-94 GOST 27809-95 GOST 22974.9-96 GOST 22974.8-96 GOST 22974.7-96 GOST 22974.6-96 GOST 22974.5-96 GOST 22974.4-96 GOST 22974.3-96 GOST 22974.2-96 GOST 22974.1-96 GOST 22974.13-96 GOST 22974.12-96 GOST 22974.11-96 GOST 22974.10-96 GOST 22974.0-96 GOST 21639.9-93 GOST 21639.8-93 GOST 21639.7-93 GOST 21639.6-93 GOST 21639.5-93 GOST 21639.4-93 GOST 21639.3-93 GOST 21639.2-93 GOST 21639.0-93 GOST 12502-67 GOST 11878-66 GOST 1763-68 GOST 13585-68 GOST 16971-71 GOST 21639.10-76 GOST 2604.1-77 GOST 11930.7-79 GOST 23870-79 GOST 11930.12-79 GOST 24167-80 GOST 25536-82 GOST 22536.2-87 GOST 22536.11-87 GOST 22536.6-88 GOST 22536.10-88 GOST 17745-90 GOST 26877-91 GOST 8233-56 GOST 1778-70 GOST 10243-75 GOST 20487-75 GOST 12503-75 GOST 21548-76 GOST 21639.11-76 GOST 2604.8-77 GOST 23055-78 GOST 23046-78 GOST 11930.11-79 GOST 11930.1-79 GOST 11930.10-79 GOST 24715-81 GOST 5639-82 GOST 25225-82 GOST 2604.11-85 GOST 2604.4-87 GOST 22536.5-87 GOST 22536.7-88 GOST 6130-71 GOST 23240-78 GOST 3242-79 GOST 11930.3-79 GOST 11930.5-79 GOST 11930.9-79 GOST 11930.2-79 GOST 11930.0-79 GOST 23904-79 GOST 11930.6-79 GOST 7565-81 GOST 7122-81 GOST 2604.3-83 GOST 2604.5-84 GOST 26389-84 GOST 2604.7-84 GOST 28830-90 GOST 21639.1-90 GOST 5640-68 GOST 5657-69 GOST 20485-75 GOST 21549-76 GOST 21547-76 GOST 2604.6-77 GOST 22838-77 GOST 2604.10-77 GOST 11930.4-79 GOST 11930.8-79 GOST 2604.9-83 GOST 26388-84 GOST 14782-86 GOST 2604.2-86 GOST 21639.12-87 GOST 22536.8-87 GOST 22536.0-87 GOST 22536.3-88 GOST 22536.12-88 GOST 22536.9-88 GOST 22536.14-88 GOST 22536.4-88 GOST 22974.14-90 GOST 23338-91 GOST 2604.13-82 GOST 2604.14-82 GOST 22536.1-88 GOST 28277-89 GOST 16773-2003 GOST 7512-82 GOST 6996-66 GOST 12635-67 GOST 12637-67 GOST 12636-67 GOST 24648-90

GOST 18897−98 (ISO 4491−2-97) Powder metal. Determination of oxygen content by methods of recovery. Weight loss while restoring the hydrogen (hydrogen loss) (adjusted)


GOST 18897−98
(ISO 4491−2-97)

Group B59


INTERSTATE STANDARD

POWDER METAL

Determination of oxygen content by methods of recovery.
Weight loss while restoring the hydrogen (hydrogen loss)

Metallic powders. Determination of oxygen content by reduction methods.
Loss of mass on hydrogen reduction (hydrogen loss)


ISS 77.160
AXTU 1790

Date of introduction 2001−07−01


Preface


1 DEVELOPED by the Interstate technical Committee for standardization MTK 150, Institute for problems of materials science I. N. Frantsevich of NAS of Ukraine

SUBMITTED to the State Committee of Ukraine for standardization, Metrology and certification

2 ADOPTED by the Interstate Council for standardization, Metrology and certification (Protocol No. 14 dated November 12, 1998)

The adoption voted:

   
The name of the state The name of the national authority
standardization
The Republic Of Azerbaijan
Azgosstandart
The Republic Of Armenia
Armastajad
The Republic Of Belarus
Gosstandart Of The Republic Of Belarus
The Republic Of Kazakhstan
Gosstandart Of The Republic Of Kazakhstan
The Kyrgyz Republic
Kyrgyzstandard
Moldova
Moldova-Standard
Russian Federation
Gosstandart Of Russia
The Republic Of Tajikistan
Tajikistandart
Turkmenistan
Glavgosekspertiza «Turkmenstandartlary»
The Republic Of Uzbekistan
Standards
Ukraine
Gosstandart Of Ukraine

3. This standard contains the full authentic text of international standard ISO 4491−2-97 «Powder metal. Determination of oxygen content by methods of recovery. Part 2. Mass loss in the process of reduction with hydrogen (combustion loss during annealing in hydrogen)» with additional requirements that reflect the needs of the economy, which in the text are highlighted in italics

4. The decision of the State Committee of the Russian Federation for standardization and Metrology dated December 19, 2000 N 384-St inter-state standard GOST 18897−98 (ISO 4491−2-97) introduced directly as a state standard of the Russian Federation from July 1, 2001

5. REPLACE GOST 18897−73


AMENDED, published in IMS No. 5, 2010

An amendment made by the manufacturer of the database

1 Scope


This standard specifies a method for determining the relative losses of mass of metal powder when heated in a stream of pure dry hydrogen for the evaluation of the chemical properties of the powder.

The method is applicable to unalloyed, partially and fully doped metal powders shown in table 1.


Table 1 — Time and temperature recovery during the test

       
Metal powder The reduction temperature, °C
Recovery time, min. Material pumps
Bronze tin 775±15 30 Porcelain, quartz, corundum, Zirconia, molybdenum, Nickel
Cobalt 1050±20 60 Porcelain, corundum, Zirconia, molybdenum, Nickel
Copper 875±15 30 Porcelain, quartz, corundum, Zirconia, molybdenum, Nickel
Lead, traces of copper, lead and bronze
600±10 10 The same
Iron 1150±20 60 Porcelain, corundum, Zirconia, molybdenum, Nickel
Steel alloy 1150±20 60 The same
Lead 550±10 30 Porcelain, quartz, corundum
Molybdenum 1100±20 60 Porcelain, corundum, zirconium oxide, Nickel
Nickel 1050±20 60 Porcelain, corundum, zirconium oxide, molybdenum
Tin 550±10 30 Porcelain, quartz, corundum
Tungsten 1150±20 60 Porcelain, corundum, Zirconia, molybdenum, Nickel
Rhenium 1150±20 60 Porcelain, corundum
Silver 550±10 30 The same
Note — test Results for powders of lead and lead bronze should be interpreted with reference to A. 6 of Annex A.



Method is not applicable to powders containing a lubricant, and mixtures of metal powders.

2 Normative references


The present standard features references to the following standards:

GOST 2184−77 the sulfuric Acid. Specifications

GOST 23148−98 (ISO 3954−77) Powders used in powder metallurgy. Sampling

3 Reagents and materials

3.1 Hydrogen with a maximum oxygen content of 0,005% (ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)) and a dew point not higher than minus 45 °C.

3.2 Nitrogen or argon with a maximum oxygen content of 0,005% (ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)) and a dew point not higher than minus 45 °C (6.3).

3.3 Askari by ND.

3.4 Phosphorus pentoxide at ND.

3.5 sulfuric Acid according to GOST 2184.

4 Equipment


An example of the most suitable installation scheme for the test is shown in figure 1.

Figure 1 is an Exemplary diagram of an apparatus to test

ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)


1 — flow of hydrogen; 2 — flow of nitrogen or argon; 3 — thermocouple; 4 — heating zone; 5 — oven;
6 crew; 7 — quartz tube

Figure 1 is an Exemplary diagram of the setup for the tests (dimensions are given in millimeters)

4.1 Laboratory scales with adequate weighing, ensure weighing to the nearest 0.1 mg.

4.2 Electric heating tube furnace which can continuously operate at these temperatures (table 1) and has a control system for maintaining the temperature within the permissible deviations given in table 1, in the part of tube where there is a porcelain boat (4.5).

Note — When testing the magnetic powders is recommended to perform a winding of an electric furnace heater is non-inductive way.

4.3 gas-tight tube made of quartz (heat-resistant up to 1000 °C) or of refractory material (for example dense alumina). The inner diameter of the tube should be from 25 to 40 mm, and the length should be on each side of the furnace not less than 200 mm.

When you run a large number of tests to determine losses on ignition in hydrogen it is allowed to use the stove, which is more in comparison with described and allows for the simultaneous testing of several of the investigated portions (batches). It is necessary to observe the test conditions given in table 1 and the results obtained should not differ from the results of tests on recommended equipment.

4.4 Fully enclosed thermocouple, e.g. platinum-rhodium, and showing or recording device that provides temperature measurement with an accuracy of 5 °C.

Allowed if it is necessary to measure the temperature on the outer side of the recovery tube. In this case the thermocouple must be pre-calibrated with a second thermocouple inside the tube to ensure that the temperature of the test sample values and tolerances specified in table 1.

4.5 the Boat, preferably of ceramic, with a high content of aluminum oxide and with a polished surface (for example a boat of porcelain or corundum). Can be used for pumps and also other materials, such as quartz, zirconium oxide, molybdenum and Nickel, if conditions permit test. The boat shall be of such size that the thickness of the powder in the boat at a uniform distribution does not exceed 3 mm (e.g. 75 mm long and 12 mm wide).

New boats must be pre-calcined in a stream of hydrogen at test temperature and should be stored in a desiccator. Boats must be calcined to constant weight.

The boat can be used repeatedly, provided that it is always used to test the same metal powder or the like, as well as carefully cleaned by mechanical means after each determination and stored in a desiccator.

4.6 device for feeding the hydrogen and nitrogen or argon with pressure gauges and flow meters to control the flow of gas.

4.7 Desiccator at ND.

4.8 Hook, alloy steel, for loading and unloading the boat from the furnace.

4.9 Scheme of installation, which can be used for pre-purification of hydrogen and nitrogen or argon in accordance with the requirements of 3.1 and 3.2, is shown in figure2.

Figure 2 — Scheme of installation for purification of gases

ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)


Figure 2 — Scheme of installation for purification of gases


The installation consists of the following elements: a cylinder with hydrogen and gear 1; a cylinder with nitrogen or argon and the reducer 2, electric tube furnace 3 (the hot zone — not less than 150 mm) with the means of monitoring and control of temperature; quartz pipe 4 with a diameter of 18 and 22mm and a length of about 400 mm, filled with copper shavings, designed for the purification of hydrogen and nitrogen or argon from the oxygen; bottles Tishchenko: Astarita 5, with phosphoric anhydride 6, mixed with calcined asbestos; flask Drexel 9 with concentrated sulphuric acid; glass of tap 8, connecting the cleaning system with a quartz tube 7 of the setup for testing is shown in figure 1.

Askari, phosphoric anhydride and sulfuric acid used to absorb moisture, replace after 1.5−2 months.

For purification of hydrogen from oxygen is also used absorption a bottle of palladianism asbestos to absorb moisture — a jar of silica gel or synthetic zeolite with a grain size from 0.25 to 0.50 mm.

The unit can be used to clean the hydrogen supplied from the main.

Allowed for purification of hydrogen from oxygen to use other settings, providing the requirements of 3.1.

5 Sampling

5.1 the Powder should be tested in the delivery condition.

5.2 mass Loss should be determined on two test portions (batches).

5.3 the Mass of the test portion should be equal to approximately 5 g, with the exception of powders with low bulk density, for which it may be less and must meet the requirements outlined in 4.5 and 6.2.

The selection and preparation of samples for analysis is carried out according to GOST 23148, if they are not specified in the regulations for a specific powder.

Allowed subject to the requirements of 4.5 and 6.2, except the differences in the test results will be used to analyze all sample powders weighing less than 5 g.

6 test procedures


Have two denitions for each test specimen.

6.1 Heat the oven (4.2) with the inserted tube (4.3) to the temperature specified in table 1 for both test metal powder.

6.2 Weigh boat (4.5) with an accuracy of 0.1 mg. Distribute the test portion of the powder along the entire length of the boat with a layer thickness of not more than 3 mm. Weighed the boat with the test portion with an accuracy of 0.1 mg.

6.3 Flow of nitrogen (3.2) through the tube for at least 1 min at flow rate corresponding to a gas velocity (25 mm/s) measured in the cooling zone of the tube. Then insert the boat containing the test portion in the tube and push it until then, until it is in the center of the furnace with uniform temperature. The boat should move slowly enough to prevent the precipitation of powder due to high speed of outgassing. Continue flowing nitrogen for 1 min.

If difficulties arise to prevent precipitation of the powder from the pumps, the powder may be pressed (without the use of lubrication, ligament, moisturizer or other additives) to obtain a pressed powder blanks low density or butoxide wrapped in copper foil, if a powder preparation has a very low strength respecing material. Copper foil can be used only if the test temperature exceeds the melting point of copper.

Extruded powder billet must have a thickness of not more than 2 mm and porosity no less than 30%.

When testing powders that tend to form compounds with nitrogen (for example chromium-containing alloy steel powder), the purging should be performed using argon instead of nitrogen (6.5 and 6.6).

6.4 Let a stream of hydrogen (3.1) and stop flow of nitrogen. Simultaneous switching of gas flows. Establish a steady flow of hydrogen in the tube, corresponding to a gas velocity of 25 mm/s in the zone of its cooling. This corresponds to approximately 50 l/h for tube 25 mm in diameter and approximately 110 l/h, for pipes with a diameter of 40 mm. Support the flow of hydrogen during the period of time specified in table 1. During this time period, maintain temperature of the furnace within a specified range.

6.5 At the end of a specified time again include the nitrogen flow and stop the flow of hydrogen. Simultaneous switching of gas flows. In 2−3 minutes, pushing the boat at the end of the furnace in the cold part of the tube.

6.6 the Boat with the recovered test portion is cooled in a nitrogen atmosphere to a temperature below 35 °C, then transferred her from the tube in a desiccator to cool to ambient temperature.

6.7 Weigh the boat with the recovered portion of the test with an accuracy of 0.1 mg.

Note — Before testing the collected, as indicated in figures 1 and 2, and United into one system installation should be checked for leaks. The gas used to purge the system, must be removed through the exhaust vent.


Throughout the process of working on the installation for purification of gases from oxygen to furnaces 3 (figure 2) must be maintained at a temperature of (450 ±10) °C.

Allowed in 6.3 and 6.5 instead of the flow of nitrogen and argon use a stream of hydrogen.

7 Processing of results

7.1 mass Loss during annealing in hydrogen ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)(mass fraction), %, is calculated by the formula

ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой), (1)


where ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)is the mass of boats with the test portion before the test, g;

ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой) — weight boats with a restored portion of the test after the test, g;

ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой) — the empty weight of the pre-treated boat (4.5),

7.2 the Result of each determination is calculated, rounding to the nearest 0,01% (ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)). The discrepancy between the two definitions should be not more than 0.04% in magnitude, if the mass loss during annealing in hydrogen of less than 0.8% (ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)). If the loss during annealing in hydrogen is equal to or more than 0.8% of (ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)), then the discrepancy should be no more than 5% from the mean value.

7.3 Calculate combustion loss during annealing in hydrogen as the arithmetic average of the two results and write it down, rounding to the nearest 0,02% (ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)), if the losses are less than or equal to 0.8% (ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)), and to the nearest 0,05% (ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)), if the losses of 0.8% (ГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)).

Note — If, for example, after you calculate weight loss amount 0,634% 0,677 you have to write with rounding to 0.01%, respectively 0.63% and 0.68% of.

7.4 In interpreting the results of the analysis of the relative loss of mass of metal powder it is necessary to consider the comments set forth in Annex A.

8 test report


The test report shall contain:

— reference to this standard;

all the details (information) required for identification of the test sample;

— the arithmetic average of the two obtained results (7.3);

— all operations not specified in this standard or regarded as optional;

— details of any events that could affect the results.

Annex a (mandatory). Interpretation of results

APPENDIX A
(required)


A. 1 the mass Loss of the powder during recovery of hydrogen (called hydrogen loss) is a characteristic of the powder required for the manufacture of powder metallurgy materials. Originally it was believed that they correspond to the oxygen content in the oxides, the recovered hydrogen, but with the advent of more complex and alloy powders, it was observed that some chemical reactions can influence the measured loss of mass both positively and negatively. Thus, when interpreting the results of the analysis should consider the following factors.

A. 2. Measured mass loss does not include oxygen that is present in the form of oxides such as SiOГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой), AlГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)OГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой), MgO, CaO, BeO, TioГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)that if the test conditions are not restored.

A. 3 weight Loss include evaporation of water and/or hydrocarbons present in the powder.

A. 4 weight Loss include gases that are a result of adsorption or absorption is present in the powder and separated when heated. The quantity of such gases is usually negligible.

A. 5 weight Loss include, in addition to oxygen, the elements that are present in the powder and under certain test conditions partially or completely removed due to the volatility or interaction with hydrogen or the oxides, thus forming volatile compounds (e.g. carbon, nitrogen, phosphorus and sulphur).

A. 6 weight Loss include metal impurities in the powder, which, under certain test conditions become volatile and partially or completely removed during the test (for example lead, zinc and cadmium).

A. 7 If the carbon powder is present, loss of mass when tested in the «hydrogen loss» may also include oxygen from oxides which, under certain test conditions are reduced by the carbon, such as oxides of SGГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)OnГОСТ 18897-98 (ИСО 4491-2-97) Порошки металлические. Определение содержания кислорода методами восстановления. Потери массы при восстановлении водородом (водородные потери) (с Поправкой)and IGOs contained in the steel simultaneously with carbon.

A. 8 Powders containing manganese, chromium or elements having a greater affinity to oxygen, can be oxidized when tested under the influence of the external environment or as a result of less recovery of refractory oxides. In exceptional cases, this leads to a negative result for hydrogen loss (i.e. when tested there is an increase in mass).