By visiting this site, you accept the use of cookies. More about our cookie policy.

GOST 28353.2-89

GOST 33729-2016 GOST 20996.3-2016 GOST 31921-2012 GOST 33730-2016 GOST 12342-2015 GOST 19738-2015 GOST 28595-2015 GOST 28058-2015 GOST 20996.11-2015 GOST 9816.5-2014 GOST 20996.12-2014 GOST 20996.7-2014 GOST P 56306-2014 GOST P 56308-2014 GOST 20996.1-2014 GOST 20996.2-2014 GOST 20996.0-2014 GOST 16273.1-2014 GOST 9816.0-2014 GOST 9816.4-2014 GOST P 56142-2014 STATE STANDARD P 54493-2011 GOST 13498-2010 STATE STANDARD P 54335-2011 GOST 13462-2010 STATE STANDARD P 54313-2011 GOST P 53372-2009 GOST P 53197-2008 GOST P 53196-2008 GOST P 52955-2008 GOST P 50429.9-92 GOST 6836-2002 GOST 6835-2002 GOST 18337-95 GOST 13637.9-93 GOST 13637.8-93 GOST 13637.7-93 GOST 13637.6-93 GOST 13637.5-93 GOST 13637.4-93 GOST 13637.3-93 GOST 13637.2-93 GOST 13637.1-93 GOST 13637.0-93 STATE STANDARD 13099-2006 GOST 13098-2006 GOST 10297-94 GOST 12562.1-82 GOST 12564.2-83 GOST 16321.2-70 GOST 4658-73 GOST 12227.1-76 GOST 16274.0-77 GOST 16274.1-77 GOST 22519.5-77 GOST 22720.4-77 GOST 22519.4-77 GOST 22720.2-77 GOST 22519.6-77 GOST 13462-79 GOST 23862.24-79 GOST 23862.35-79 GOST 23862.15-79 GOST 23862.29-79 GOST 24392-80 GOST 20997.5-81 GOST 24977.1-81 GOST 25278.8-82 GOST 20996.11-82 GOST 25278.5-82 GOST 1367.7-83 GOST 26239.9-84 GOST 26473.1-85 GOST 16273.1-85 GOST 26473.2-85 GOST 26473.6-85 GOST 25278.15-87 GOST 12223.1-76 GOST 12645.7-77 GOST 12645.1-77 GOST 12645.6-77 GOST 22720.3-77 GOST 12645.4-77 GOST 22519.7-77 GOST 22519.2-77 GOST 22519.0-77 GOST 12645.5-77 GOST 22517-77 GOST 12645.2-77 GOST 16274.9-77 GOST 16274.5-77 GOST 22720.0-77 GOST 22519.3-77 GOST 12560.1-78 GOST 12558.1-78 GOST 12561.2-78 GOST 12228.2-78 GOST 18385.4-79 GOST 23862.30-79 GOST 18385.3-79 GOST 23862.6-79 GOST 23862.0-79 GOST 23685-79 GOST 23862.31-79 GOST 23862.18-79 GOST 23862.7-79 GOST 23862.1-79 GOST 23862.20-79 GOST 23862.26-79 GOST 23862.23-79 GOST 23862.33-79 GOST 23862.10-79 GOST 23862.8-79 GOST 23862.2-79 GOST 23862.9-79 GOST 23862.12-79 GOST 23862.13-79 GOST 23862.14-79 GOST 12225-80 GOST 16099-80 GOST 16153-80 GOST 20997.2-81 GOST 20997.3-81 GOST 24977.2-81 GOST 24977.3-81 GOST 20996.4-82 GOST 14338.2-82 GOST 25278.10-82 GOST 20996.7-82 GOST 25278.4-82 GOST 12556.1-82 GOST 14339.1-82 GOST 25278.9-82 GOST 25278.1-82 GOST 20996.9-82 GOST 12554.1-83 GOST 1367.4-83 GOST 12555.1-83 GOST 1367.6-83 GOST 1367.3-83 GOST 1367.9-83 GOST 1367.10-83 GOST 12554.2-83 GOST 26239.4-84 GOST 9816.2-84 GOST 26473.9-85 GOST 26473.0-85 GOST 12645.11-86 GOST 12645.12-86 GOST 8775.3-87 GOST 27973.0-88 GOST 18904.8-89 GOST 18904.6-89 GOST 18385.0-89 GOST 14339.5-91 GOST 14339.3-91 GOST 29103-91 GOST 16321.1-70 GOST 16883.2-71 GOST 16882.1-71 GOST 12223.0-76 GOST 12552.2-77 GOST 12645.3-77 GOST 16274.2-77 GOST 16274.10-77 GOST 12552.1-77 GOST 22720.1-77 GOST 16274.4-77 GOST 16274.7-77 GOST 12228.1-78 GOST 12561.1-78 GOST 12558.2-78 GOST 12224.1-78 GOST 23862.22-79 GOST 23862.21-79 GOST 23687.2-79 GOST 23862.25-79 GOST 23862.19-79 GOST 23862.4-79 GOST 18385.1-79 GOST 23687.1-79 GOST 23862.34-79 GOST 23862.17-79 GOST 23862.27-79 GOST 17614-80 GOST 12340-81 GOST 31291-2005 GOST 20997.1-81 GOST 20997.4-81 GOST 20996.2-82 GOST 12551.2-82 GOST 12559.1-82 GOST 1089-82 GOST 12550.1-82 GOST 20996.5-82 GOST 20996.3-82 GOST 12550.2-82 GOST 20996.8-82 GOST 14338.4-82 GOST 25278.12-82 GOST 25278.11-82 GOST 12551.1-82 GOST 25278.3-82 GOST 20996.6-82 GOST 25278.6-82 GOST 14338.1-82 GOST 14339.4-82 GOST 20996.10-82 GOST 20996.1-82 GOST 12645.9-83 GOST 12563.2-83 GOST 19709.1-83 GOST 1367.11-83 GOST 1367.0-83 GOST 19709.2-83 GOST 12645.0-83 GOST 12555.2-83 GOST 1367.1-83 GOST 9816.3-84 GOST 9816.4-84 GOST 9816.1-84 GOST 9816.0-84 GOST 26468-85 GOST 26473.11-85 GOST 26473.12-85 GOST 26473.5-85 GOST 26473.7-85 GOST 16273.0-85 GOST 26473.3-85 GOST 26473.8-85 GOST 26473.13-85 GOST 25278.13-87 GOST 25278.14-87 GOST 8775.1-87 GOST 25278.17-87 GOST 18904.1-89 GOST 18904.0-89 STATE STANDARD P 51572-2000 GOST 14316-91 GOST P 51704-2001 GOST 16883.1-71 GOST 16882.2-71 GOST 16883.3-71 GOST 8774-75 GOST 12227.0-76 GOST 12797-77 GOST 16274.3-77 GOST 12553.1-77 GOST 12553.2-77 GOST 16274.6-77 GOST 22519.1-77 GOST 16274.8-77 GOST 12560.2-78 GOST 23862.11-79 GOST 23862.36-79 GOST 23862.3-79 GOST 23862.5-79 GOST 18385.2-79 GOST 23862.28-79 GOST 16100-79 GOST 23862.16-79 GOST 23862.32-79 GOST 20997.0-81 GOST 14339.2-82 GOST 12562.2-82 GOST 25278.7-82 GOST 20996.12-82 GOST 12645.8-82 GOST 20996.0-82 GOST 12556.2-82 GOST 25278.2-82 GOST 12564.1-83 GOST 1367.5-83 GOST 25948-83 GOST 1367.8-83 GOST 1367.2-83 GOST 12563.1-83 GOST 9816.5-84 GOST 26473.4-85 GOST 26473.10-85 GOST 12645.10-86 GOST 8775.2-87 GOST 25278.16-87 GOST 8775.0-87 GOST 8775.4-87 GOST 12645.13-87 GOST 27973.3-88 GOST 27973.1-88 GOST 27973.2-88 GOST 18385.6-89 GOST 18385.7-89 GOST 28058-89 GOST 18385.5-89 GOST 10928-90 GOST 14338.3-91 GOST 10298-79 GOST P 51784-2001 GOST 15527-2004 GOST 28595-90 GOST 28353.1-89 GOST 28353.0-89 GOST 28353.2-89 GOST 28353.3-89 STATE STANDARD P 52599-2006

GOST 28353.2−89 Silver. Method of atomic-emission analysis with inductive plasma


GOST 28353.2−89

Group B59

INTERSTATE STANDARD

SILVER

Method of atomic-emission analysis with inductive plasma

Silver. Method of atomic-emission analysis with inductive plasma

ISS 39.060
77.120.99
AXTU 1709

Date of introduction 1991−01−01

INFORMATION DATA

1. DEVELOPED AND INTRODUCED the Main Directorate of precious metals and diamonds at the Council of Ministers and the USSR Ministry of nonferrous metallurgy of the USSR

DEVELOPERS

Yu. a. Karpov, Dr. chem. Sciences (head of subject); O. A. Shiryaeva, PhD. chem. Sciences; L. N. Ryazanova, PhD. chem. Sciences; I. N. Vladimir; Sergey V. Sokolov; T. D. Gornostaeva, PhD. chem. Sciences; L. V. Potanin

2. APPROVED AND put INTO EFFECT by Decision of the USSR State Committee on management of quality and standards from 29.11.89 N 3523

3. INTRODUCED FOR THE FIRST TIME

4. REFERENCE NORMATIVE AND TECHNICAL DOCUMENTS

   
The designation of the reference document referenced
Paragraph number section
GOST 123−98
2
GOST 849−97
2
GOST 859−2001
2
GOST 1089−82
2
GOST 1770−74
2
GOST 3640−94
2
GOST 6008−90
2
GOST 6835−2002
2
GOST 10157−79
2
GOST 10928−90
2
GOST 11125−84
2
GOST 12342−81
2
GOST 13610−79
2
GOST 14261−77
2
GOST 14262−78
2
GOST 14836−82
2
GOST 14837−79
2
GOST 17614−80
2
GOST 22861−93
2
GOST 25336−82
2
GOST 28353.0−89
1; 3.1; 3.2.1; 6
GOST 29169−91
2
29227−91 GOST — GOST 29230−91
2
THAT 6−09−03−462−78
2
THAT 6−09−1678−86
2
THAT 6−09−2024−78
2
THAT 48−1-10−87
2

5. Limitation of actions taken by Protocol No. 5−94 of the Interstate Council for standardization, Metrology and certification (ICS 11−12−94)

6. REPRINTING. December 2005


This standard specifies atomic emission (with an induction high-frequency plasma) method for determination of impurities: gold, copper, iron, platinum, palladium, rhodium, bismuth, lead, antimony, zinc, cobalt, Nickel, arsenic, tellurium and manganese in silver with a mass fraction of silver of at least 99.9%.

The standard does not apply to silver of high purity.

The method is based on excitation of atoms of the sample in RF induction plasma and measuring the intensity of the analytical spectral line of the element during the spraying of the solution of the sample into the plasma. The relationship of the intensity of the line with the mass concentration of the element in the solution set with the help of calibration curve.

The method allows to determine the mass fraction of impurities in the intervals given in table.1.

Table 1

   
The designated element
Mass fraction, %
Gold
From 0.0001 to 0.01
Copper
«0,0002» 0,01
Iron
«Of 0.0001» to 0.01
Platinum
«To 0.0003» of 0.01
Palladium
«Of 0.0001» to 0.01
Rhodium
«0,0002» 0,01
Bismuth
«To 0.0003» of 0.01
Lead
«0,0005» 0,01
Antimony
«0,0005» 0,01
Zinc
«Of 0.0001» to 0.01
Cobalt
«0,0002» 0,01
Nickel
«Of 0.0001» to 0.01
Arsenic
«0,0005» 0,01
Tellurium
«To 0.0003» of 0.01
Manganese
«Of 0.0001» to 0.01



The error analysis results for the defined values of mass fractions of impurities with confidence probability ГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof 0.95 is given in table.2.

Table 2

   
Mass fraction of impurities, %

The norm error ГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, %

0,00010
±Of 0.00006
0,00030
±0,00015
0,0005
±0,0002
0,0010
±0,0003
0,0030
±0,0005
0,0050
±0,0007
0,0100
±0,0015

1. GENERAL REQUIREMENTS

General requirements for method of analysis and safety requirements according to GOST 28353.0.

2. APPARATUS, REAGENTS AND MATERIALS

Spectral-analytical complex, consisting of HF generator with a capacity of 0,8−1,5 kW plasma torch spray system, quantometer (polychromator) or monochromator with inverse linear dispersion is not worse than 0.5 nm/mm and photoelectric registration of radiation intensity, a control computer, display and printer.

Argon gas according to GOST 10157.

Analytical scales of the 2nd class.

A muffle furnace with thermostatic control to the temperature of 900 °C.

Electric stove with a closed spiral.

The agate mortar.

Glasses glass with a capacity of 50, 100, 200, 250 and 300 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойaccording to GOST 25336.

Glass flasks with a capacity of 25, 50, 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойaccording to GOST 25336.

The corundum crucibles.

Pipettes with a capacity of 1, 2, 5 and 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойwith divisions according to GOST 29169, 29227 GOST — GOST 29230.

Volumetric flasks with a capacity of 25, 50 and 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойaccording to GOST 1770.

Obestochennye the filter paper of «blue ribbon» «white ribbon» on the other 6−09−1678.

Hydrochloric acid of high purity according to GOST 14261 and diluted 1:1, 1:5, 1:10 and 1:100.

Nitric acid of high purity according to GOST 11125 and diluted 1:1, 1:10.

Sulfuric acid of high purity according to GOST 14262 and diluted 1:9.

Barium peroxide is a high purity on the other 6−09−03−462.

Silver of high purity on the other 48−1-10.

Gold GOST 6835.

Carbonyl iron, radio GOST 13610.

Copper according to the GOST 859.

Bismuth GOST 10928.

Lead of high purity according to GOST 22861.

Zinc GOST 3640.

Antimony GOST 1089.

Cobalt GOST 123.

Nickel GOST 849.

Tellurium GOST 17614.

Palladium powder according to GOST 14836*.
______________
* On the territory of the Russian Federation GOST 31291−2005. — Note the manufacturer’s database.

Manganese metal according to GOST 6008.

Arsenic metal, high purity for NTD.

Platinum powder according to GOST 14837*.
______________
* On the territory of the Russian Federation GOST 31290−2005. — Note the manufacturer’s database.

Rhodium powder according to GOST 12342 or rhodium trichloride cetarehwodie on the other 6−09−2024.

Standard samples of composition silver.

Solutions containing 1 mg/cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof bismuth, copper, Nickel, lead, iron, cobalt, and arsenic: a portion of each of these metals with a weight of 100 mg dissolved in 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof nitric acid (1:1) under heating. The solution was boiled to remove oxides of nitrogen, transferred to volumetric flasks with a capacity of 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, adjusted to the mark with water and mix.

Solutions containing 1 mg/cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойgold, platinum, antimony and tellurium: a portion of each of these metals with a weight of 100 mg are dissolved in 20 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof a mixture of hydrochloric and nitric acids (3:1) under heating, the solution is evaporated to a volume of 3−5 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, flow 20 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof a hydrochloric acid solution (1:5), transferred to a volumetric flask with a capacity of 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, adjusted to the mark with the same acid solution and stirred.

Solutions containing 1 mg/cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойzinc, and manganese: a portion of each of these metals with a weight of 100 mg dissolved in 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof hydrochloric acid (1:1) under heating. The solutions were transferred to volumetric flasks with a capacity of 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, adjusted to the mark with hydrochloric acid (1:5) and stirred.

A solution containing 1 mg/CCГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof palladium: a sample of palladium weighing 100 mg was dissolved in 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof nitric acid by heating, the solution is evaporated to a volume of 3−5 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, flow 20 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof a hydrochloric acid solution (1:5), transferred to a volumetric flask with a capacity of 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, adjusted to the mark with the same acid solution and stirred.

A solution containing 1 mg/cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойrhodium, prepare one of the carried away

of the following ways:

1) a portion of rhodium (in powder form) weighing 100 mg was thoroughly stirred with a fivefold quantity of peroxide of barium, fray in an agate mortar, transferred to a corundum crucible and sintered in air for 2−3 hours at a temperature of 800−900 °C (the crucible is put in a cold muffle). Sintered is cooled, transferred to a beaker with a capacity of 200 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, moistened with water and dissolved in a solution of hydrochloric acid (1:1) until complete dissolution. If, after the dissolution of SPECA in hydrochloric acid is a residue, sintering and dissolution repeat. The resulting solution is diluted with water to a volume of 50 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойand precipitated barium sulfate by adding sulfuric acid solution (1:9) portions with constant stirring. The solution is heated to a temperature of 60−70 °C. after 2−3 hours check the completeness of the precipitation of the barium sulfate and filter it through filter «blue ribbon», or double filter «white ribbon» in a volumetric flask with a capacity of 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой. The filter cake was washed 4−5 times with hot hydrochloric acid (1:5), and then 5−6 times with hot water. The solution was adjusted to the mark with hydrochloric acid (1:5) and stirred.

2) the Suspension of rhodium trichloride ground 273,4 mg dissolved in 20 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof a hydrochloric acid solution (1:1) at weak heating, the solution was cooled, transferred to a volumetric flask with a capacity of 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, adjusted to the mark with hydrochloric acid (1:5) and stirred.

Solution a: in a volumetric flask with a capacity of 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойplaced 1 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойsolutions of gold, platinum, palladium, rhodium, iron, copper, bismuth, tellurium, cobalt, Nickel, arsenic, antimony, lead, zinc and manganese, add 20 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof hydrochloric acid, adjusted to the mark with water and mix. 1 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof the solution contains 10 µg each of the identified elements; stable for months.

Solution B: in a volumetric flask with a capacity of 100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойis placed 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойsolution A, was adjusted to the mark with hydrochloric acid (1:5) and stirred. 1 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof the solution contains 1 µg of each of the identified elements; is prepared on the day of application.

3. PREPARATION FOR ASSAY

3.1. Preparation of samples for analysis without separation of the silver

To perform the analysis selected for two silver sample weight 0.5−1.0 g each were placed in a glass with a capacity of 50−100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойand clean the surface of silver GOST 28353.0.

The sample was dissolved with mild heating in 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof nitric acid (1:1). After dissolution of silver was added 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof water, filter the solution into a flask with a capacity of 50−100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойthrough a double filter of «blue ribbon» with the addition of maseribane paper and washed precipitate containing gold and rhodium with a solution of nitric acid (1:10). The solution was transferred to a volumetric flask with a capacity of 50−100 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, adjusted to the mark with water and mix (solution 1).

Solution 1 analyze for arsenic, bismuth, copper, cobalt, iron, manganese, Nickel, lead, palladium, platinum, tellurium, and zinc.

The filter with precipitate was placed in a beaker with a capacity of 50 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, add 5 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof a mixture of hydrochloric and nitric acids (3:1), incubated on the plate for 5−10 min at low heat, add 5 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof hydrochloric acid solution (1:5) and filtered the solution into a flask with a capacity of 50 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой. The filter was washed with hydrochloric acid solution (1:10). The solution was transferred to a volumetric flask with a capacity of 25 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, adjusted to the mark with water and mix (solution 2).

A solution of 2 assayed for gold content.

At the same time through all stages of sample preparation to the analysis carried out two test experience the purity of reacti

the second world war.

3.2. Preparation of samples for analysis with the separation of the silver

3.2.1. To perform the analysis selected two hanging silver weighing 0.5−2.0 g, each of which is placed in a beaker with a capacity of 250 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойand clean the surface of silver GOST 28353.0.

In a glass pour 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof nitric acid (1:1) and dissolve the sample under low heat. After complete dissolution of silver was added 5 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof hydrochloric acid and dissolved gold and rhodium under low heat for 3−5 min the Solution is diluted with hot water to a volume of 150−200 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойand immediately filtered into a glass with a capacity of 300 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойthrough filter «blue ribbon», washed 4−5 times with hot hydrochloric acid solution (1:100) and 2−3 times with hot water, without transferring the precipitate of silver chloride on the filter. The precipitate is washed by decantation 5−6 times with hot hydrochloric acid solution (1:100). The solution (filtrate 1) is evaporated at a moderate heating to a volume of 2−3 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой.

3.2.2. A filter through which the filtration was carried out, placed in a glass of precipitate of silver chloride and add 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойsulphuric and nitric acids. The sample is incubated at room temperature until the cessation of the violent reaction is then heated to release dense fumes of sulphuric anhydride. The glass moved to the front of the plate, gently on the side of a glass and add 4−5 drops of nitric acid and again heat until dense fumes of sulphuric anhydride. The operation of addition of nitric acid is repeated until complete dissolution of silver chloride. The solution is evaporated to wet salts, cool, add 10 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof nitric acid, 100 CCГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof hot water and heated to dissolve the salts. To the solution add 3 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof hydrochloric acid and immediately filtered in a glass of evaporated filtrate 1 through filter «blue ribbon», previously prepared as specified in clause 3.2.1. The precipitate is washed by decantation 6−7 times with hot hydrochloric acid solution (1:100). The filtrate is evaporated with moderate heat to a volume of 2−3 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой.

To the residue after evaporation was added 3 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойof hydrochloric acid, the solution transferred to a volumetric flask with a capacity of 25−50 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой, rinse the glass with water. The solution was adjusted to the mark with hydrochloric acid (1:5) and stirred. The resulting solution was supplied for analysis.

At the same time through all stages of sample preparation to the analysis carried out two test experience on the purity of the reagents

.

3.3. Preparation of solutions comparison

3.3.1. For the determination of impurities in silver without separation of the silver solutions are used comparison, obtained by dissolving standard samples of composition silver.

To do this, select two sample standard samples of the composition by weight 0.5−1.0 g, mass fraction of impurities which are less than and greater than the expected mass fraction of impurities in the analyzed sample. The dissolution of batches and preparation of solutions is carried out according to claim 3.1 contemporaneously with the preparation of samples for analysis.

3.3.2. For the determination of impurities in silver with the separation of the silver solutions are used comparison, prepared from solutions A and B.

Solutions comparison with the mass concentration of determined elements 0,01; 0,03; 0,05; 0,10; 0,20; 0,40 and 1.00 µg/cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойin volumetric flasks with a capacity of 50 cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойimpose aliquote part of the solution A or B (tab.3), adjusted to the mark with hydrochloric acid (1:5) and stirred.

Table 3

     
Solution comparison

The volume of injection solution A or B, seeГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой

Mass concentration of elements, mg/cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой

Solution B
RS-1
0,5
0,01
RS-2
1,5
0,03
RS-3
2,5
0,05
RS-4
5,0
0,10
Solution A
RS-5
1,0
0,20
RS-6
2,0
0,40
RS-7
5,0
Of 1.00

4. ANALYSIS

Spectral-analytical complex is prepared to work include and take measurements of the analytical signal in accordance with the working manual of the device.

The wavelength of analytical spectral lines are given in table.4.

Table 4

   
The designated element
Wavelength, nm
Gold
242,80
Copper
324,75
Iron
238,20
Platinum
265,94
Palladium
363,47; 340,46
Rhodium
343,49
Bismuth
223,06
Lead
220,35
Antimony
206,83
Zinc
213,86
Cobalt
228,62
Nickel
231,60
Arsenic
193,70
Tellurium
214,28
Manganese
257,61



Successively introduced into the plasma solutions and comparison with the help of a special program using the least squares method to get the numerical values of the coefficients of the polynomials approximating the calibration characteristics for each of the identified elements that enter into long-term memory of the computer.

The calibration characteristics is obtained in the coordinates: the intensity of the analytical line of the element minus the intensity of the emission spectrum for the solution in the reference experiment at the wavelength of the analytical line of the element mass concentration of the element in solutions comparison.

Solutions of the analyzed sample injected into the plasma and measure the intensity of the analytical lines of the determined elements. In accordance with the program for each solution, perform 3 measurements of the intensity and calculate the average value, which using the calibration characteristics find the concentration of element in ág/cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойin the sample solution.

Note. During the transition from the analysis of nitrate of silver solutions by hydrochloric acid, and Vice versa, thoroughly rinse the spray system with a solution of nitric acid (1:10) and water to a negative reaction to silver ions or chloride ions, respectively.

5. PROCESSING OF THE RESULTS

5.1. Mass fraction of the element (ГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой) in percent is calculated by the formula

ГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой,


where ГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмойis the mass concentration of the analyzed element in the sample solution, µg/cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой;

ГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой — the volume of the sample solution, cmГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой;

ГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой — the weight of the portion of the sample,

The result of the analysis take the average of the two results of parallel measurements, each of which is made of a separate hinge.

5.2. The discrepancy between the results of parallel measurements (the difference between the smaller and larger of the two results of parallel measurements) and the variance analysis results (difference between smaller and larger of the two results of the analysis) must not exceed the allowable absolute values of the differences established with confidence probability of ГОСТ 28353.2-89 Серебро. Метод атомно-эмиссионного анализа с индукционной плазмой0.95 and is shown in table.5.

Table 5

   
Mass fraction of element, %
The absolute allowable difference, %
0,00010
0,00008
0,0003
0,0002
0,0005
0,0003
0,0010
0,0005
0,0030
0,0005
0,0050
About 0.0006
0,0100
0,0007



For intermediate values of the mass fraction of detectable elements permitted discrepancies are calculated by using linear interpolation.

6. THE CONTROL ACCURACY OF THE ANALYSIS

The control accuracy of the analysis carried out according to standard samples of composition of silver in accordance with GOST 28353.0.