GOST 28378-89
GOST 28378−89 (ISO 5755−2-87, ISO 5755−3-87) powder structural Materials based on iron. Brand
GOST 28378−89
(ISO 5755−2-87,
ISO 5755−3-87)
Group 56
INTERSTATE STANDARD
THE POWDER STRUCTURAL MATERIALS BASED ON IRON
Brand
Iron-based powder structural materials. Types
ISS 77.160
AXTU 1478
Date of introduction 1991−01−01
INFORMATION DATA
1. DEVELOPED AND INTRODUCED by the Academy of Sciences of the Ukrainian SSR
2. APPROVED AND put INTO EFFECT by Decision of the USSR State Committee on management of quality and standards from
3. The standard corresponds to the international standard ISO 5755−2, with the exception of brands ПК10Ф and ПК10Д2Ф and international standard ISO 5755−3 in part ПК10Н2Д2 brands, ПК40Н2Д2, ПК40Н4Д2М, ПК70Н2Д2, ПК20Х13, ПК10Х17Н2, ПК10Х18Н9Т and ПК10Х18Н15
4. INTRODUCED FOR THE FIRST TIME
5. REFERENCE NORMATIVE AND TECHNICAL DOCUMENTS
The designation of the reference document referenced |
The number of the paragraph, subparagraph |
GOST 1497−84 |
6.4 |
GOST 2604.4−87 |
6.1.8, 6.1.10 |
GOST 9012−59 |
6.3 |
GOST 12344−2003 |
6.1.1, 6.1.10 |
GOST 12345−2001 |
6.1.9, 6.1.10 |
GOST 12348−78 |
6.1.6, 6.1.10 |
GOST 12350−78 |
6.1.5, 6.1.10 |
GOST 12352−81 |
6.1.3, 6.1.10 |
GOST 12354−81 |
6.1.4, 6.1.10 |
GOST 12355−78 |
6.1.2, 6.1.10 |
GOST 12356−81 |
6.1.7, 6.1.10 |
GOST 18227−98 |
6.4 |
GOST 18898−89 |
6.2 |
GOST 22536.3−88 |
6.1.8, 6.1.10 |
6. Limitation of actions taken by Protocol No. 5−94 of the Interstate Council for standardization, Metrology and certification (ICS 11−12−94)
7. REPRINTING. January 2006
This standard establishes the brand of structural powder materials based on iron:
mild steels, carbon and copper;
steels Nickel-molybdenum, Medinaceli, Medinaceli and molybdenum;
steels chromium, manganese, chromenickel-manganese;
stainless steels intended for parts used in various branches of engineering.
The standard does not apply to materials subjected to additional heat treatment.
1. Brand chemical composition and physico-mechanical properties of structural powder materials shall be as given in table.1 and 2.
Table 1
Mark | Mass fraction of elements, % | |||||||||||
Jelly zo |
Carbon | Copper | Nor — Kel | Mo- lib- den |
Chrome | Mar Ganz |
Foz Fort |
Sulfur | Titan | Other elements, not more | ||
Mild steel, carbon and copper | ||||||||||||
PK10* |
Based VA |
Not more than 0.30 | - | - | - | - | - | - | - | - | 2 | |
ПК40* |
0,31−0,60 | - | - | - | - | - | - | - | - | |||
ПК70* |
0,61−0,90 | - | - | - | - | - | - | - | - | |||
ПК10Ф |
Not more than 0.30 | - | - | - | - | - | - | 0,8−1,2 |
- | |||
ПК10Д2Ф |
Not more than 0.30 | 1−3 | - | - | - | - | - | 0,8−1,2 |
- | |||
ПК10Д3 |
Not more than 0.30 | 1−4 | - | - | - | - | - | - | - | |||
ПК10Д3К |
Not more than 0.30 | 1−4 | - | - | - | - | - | - | 0,15 — 0,40 |
|||
ПК10Д5* |
Not more than 0.30 | 4−6 | - | - | - | - | - | - | - | |||
ПК40Д3 |
0,31−0,60 | 1−4 | - | - | - | - | - | - | - | |||
ПК40Д3К |
0,31−0,60 | 1−4 | - | - | - | - | - | - | 0,15 — 0,40 |
|||
ПК40Д3КФ | 0,31−0,60 | 1−4 | - | - | - | - | - | 0,15 — 0,45 |
0,15 — 0,40 |
|||
ПК70Д3* |
0,61−0,90 | 1−4 | - | - | - | - | - | - | - | |||
Steel Nickel-molybdenum, medicalese, medinical-molybdenum | ||||||||||||
ПК10Н2М |
OS- Nova |
Not more than 0.30 | - | 1−3 | 0,3−0,7 |
- | - | - | - | - | 2 | |
ПК10Н2Д2 |
Not more than 0.30 | 1−3 | 1−3 | - | - | - | - | - | - | |||
ПК10Н4Д4 |
Not more than 0.30 | 2−6 | 2−6 | - | - | - | - | - | - | |||
ПК10Н2Д6М |
Not more than 0.30 | 4−8 | 1−3 | 0,3−0,7 |
- | - | - | - | - | |||
ПК40НМ |
0,31−0,60 | - | 0,5−1,0 |
0,3−0,7 |
- | - | - | - | - | |||
ПК40Н2М |
0,31−0,60 | - | 1−3 | 0,3−0,7 |
- | - | - | - | - | |||
ПК40Н2Д2 |
0,31−0,60 | 1−3 | 1−3 | - | - | - | - | - | - | |||
ПК40Н3Д2Х |
0,31−0,60 | 1−3 | 2−4 | - | 0,5−1,5 |
- | - | - | - | |||
ПК40Н2Д2М |
0,31−0,60 | 1−3 | 1−3 | 0,3−0,7 |
- | - | - | - | - | |||
ПК40Н4Д2М |
0,31−0,60 | 1−3 | 3−5 | 0,3−0,7 |
- | - | - | - | - | |||
ПК70Н2Д2 |
0,61−0,90 | 1−3 | 1−3 | - | - | - | - | - | - | |||
Of steel chromium, manganese, chromenickel-manganese | ||||||||||||
ПК70Х3 | OS- Nova |
0,61−0,90 | - | - | - | 2,0−4,0 |
- | - | - | - | 2 | |
ПКХ6 | 0,91−1,20 | - | - | - | Of 5.0−7.0 |
- | - | - | - | |||
ПК40Х2 | 0,31−0,60 | - | - | - | 1,0- 3,0 |
- | - | - | - | |||
ПК40Г2 | 0,31−0,60 | - | - | - | - | 1,0−3,0 |
- | - | - | |||
ПК40ХН2Г | 0,31−0,60 | - | 1,0−3,0 |
- | 0,5−1,5 | 0,5−1,5 |
- | - | - | |||
ПКГ13 | 0,91−1,20 | - | - | - | - | 12,0 — 14,0 |
- | - | - | |||
Stainless steel | ||||||||||||
ПК10Х13М2 | OS- Nova |
Not more than 0.10 | - | - | 1,0−3,0 | 12,0 — 14,0 |
- | - | - | - | 2 | |
ПК10Х25 | Not more than 0.10 | - | - | - | 24,0 — 26,0 |
- | - | - | - | |||
ПК20Х13 | 0,10−0,30 | - | - | - | 12,0 — 14,0 |
- | - | - | - | |||
ПК40Х13М2 | 0,30−0,50 | - | - | 1,0−3,0 | 12,0 — 14,0 |
- | - | - | - | |||
ПК10Х17Н2 | Not more than 0.15 | - | 1,0−3,0 |
- | 16,0 — 18,0 |
- | - | - | - | |||
ПК10Х18Н9Т | Not more than 0.10 | - | 8,0 — 10,0 |
- | 17,0 — 19,0 |
- | - | - | 0,5−0,8 | |||
ПК10Х18Н15 | Not more than 0.10 | - | 14,0 — 16,0 |
- | 17,0 — 19,0 |
- | - | - | - |
________________
* If necessary, doping of sulfur mass fraction of sulfur indicated in the normative and technical documentation on specific product or drawing for design documentation.
Note. The need to control the chemical composition of materials should be specified in normative and technical documentation or drawing for a specific product.
Table 2
Mark | Density, |
Hardness HB, MPa | Yield strength tensile, MPa |
Elongation, % | |
not less than | |||||
Mild steel, carbon and copper | |||||
PK10 | 6,0 |
400 | 100 | 2 | |
6,4 |
500 | 140 | 3 | ||
6,8 |
650 | 180 | 4 | ||
7,2 |
800 | 220 | 6 | ||
7,6 |
900 | 260 | 20 | ||
ПК40 | 6,0 |
550 | 140 | - | |
6,4 |
750 | 190 | 1 | ||
6,8 |
900 | 240 | 2 | ||
7,2 |
1000 | 290 | 4 | ||
7,6 |
1100 | 400 | 10 | ||
ПК70 | 6,0 |
800 | 200 | - | |
6,4 |
1000 | 250 | 1 | ||
6,8 |
1200 | 300 | 1 | ||
7,4 |
1450 | 600 | 4 | ||
ПК10Ф | 6,8 |
650 | 200 | 3 | |
ПК10Д2Ф | 6,0 |
600 | 200 | 1 | |
ПК10Д3 | 6,0 |
550 | 160 | 1 | |
6,4 |
650 | 200 | 2 | ||
6,8 |
750 | 240 | 3 | ||
7,4 |
900 | 500 | 15 | ||
ПК10Д3К | 6,0 |
550 | 160 | 1 | |
6,4 |
650 | 200 | 2 | ||
ПК10Д5 | 6,0 |
750 | 200 | - | |
6,4 |
850 | 240 | 1 | ||
6,8 |
950 | 280 | 2 | ||
7,4 |
1100 | 600 | 10 | ||
ПК40Д3 | 6,0 |
800 | 220 | - | |
6,4 |
1000 | 280 | - | ||
ПК40Д3К | 6,0 |
800 | 220 | - | |
6,4 |
1000 | 280 | - | ||
ПК40Д3КФ | 6,0 |
850 | 240 | ||
6,4 |
1050 | 300 | - | ||
ПК70Д3 | 6,0 |
1000 | 270 | - | |
6,4 |
1200 | 340 | - | ||
6,8 |
1400 | 420 | - | ||
7,4 |
1600 | 700 | 3 | ||
Steel Nickel-molybdenum, medicalese, medinical-molybdenum | |||||
ПК10Н2М | 6,8 |
700 | 240 | 8 | |
7,2 |
850 | 270 | 12 | ||
7,6 |
1000 | 450 | 18 | ||
ПК10Н2Д2 | 6,4 | 700 | 240 | 3 | |
6,8 | 900 | 270 | 4 | ||
7,2 | 1100 | 300 | 6 | ||
7,6 | 1300 | 500 | 15 | ||
ПК10Н4Д4 | 6,4 |
900 | 300 | 2 | |
6,8 |
1200 |
500 | 3 | ||
ПК10Н2Д6М |
7,4 |
1800 | 800 | 3 | |
ПК40НМ* | 6,8 |
900 | 300 | 4 | |
7,2 |
1100 | 340 | 6 | ||
7,6 |
1300 | 600 | 10 | ||
ПК40Н2М* | 6,4 |
800 | 260 | 2 | |
6,8 |
1000 | 320 | 4 | ||
7,2 |
1200 | 380 | 5 | ||
7,6 |
1400 | 700 | 7 | ||
ПК40Н2Д2* | 6,4 |
1000 | 300 | 1 | |
6,8 |
1200 | 360 | 2 | ||
7,4 |
1500 | 700 | 5 | ||
ПК40Н3Д2Х* | 6,4 |
1200 | 350 | 1 | |
6,8 |
1500 | 500 | 2 | ||
ПК40Н2Д2М* | 6,8 |
1500 | 440 | 3 | |
7,4 |
1800 | 780 | 6 | ||
ПК40Н4Д2М* | 6,8 |
1800 | 600 | 1 | |
7,4 |
2200 | 880 | 4 | ||
ПК70Н2Д2* | 6,4 |
1200 | 330 | - | |
6,8 |
1500 | 440 | - | ||
7,4 |
2000 | 800 | 3 | ||
Of steel chromium, manganese, chromenickel-manganese | |||||
ПК70Х3* | 6,4 | 1100 | 350 | - | |
6,8 |
1400 | 450 | - | ||
ПКХ6* |
7,4 | 1800 | 800 | - | |
ПК40Х2* | 6,4 |
900 | 300 | 1 | |
6,8 |
1100 | 400 | 2 | ||
7,4 |
1400 | 700 | 4 | ||
ПК40Г2* | 7,4 |
1400 | 700 | 5 | |
ПК40ХН2Г* | 6,4 |
1000 | 320 | 1 | |
6,8 |
1200 | 450 | 2 | ||
7,4 |
1500 | 850 | 6 | ||
ПКГ13* | 7,4 |
2400 | - | - | |
Stainless steel | |||||
ПК10Х13М2* |
7,4 |
1000 | 400 | 12 | |
ПК10Х25 |
7,4 |
1600 | 400 | 15 | |
ПК20Х13* |
6,4 |
1800 | 320 | 1 | |
6,8 |
2100 | 420 | 2 | ||
7,4 |
2500 | 480 | 6 | ||
ПК40Х13М2* | 7,4 |
2800 | 550 | 4 | |
ПК10Х17Н2* | 6,8 |
2300 | 400 | 2 | |
7,4 |
2700 | 500 | 8 | ||
ПК10Х18Н9Т | 6,4 |
850 | 320 | 3 | |
6,8 |
950 | 380 | 4 | ||
7,2 |
1050 | 400 | 5 | ||
7,6 |
1300 | 550 | 15 | ||
ПК10Х18Н15 | 6,4 |
800 | 300 | 4 | |
6,8 |
900 | 380 | 5 | ||
7,2 |
1000 | 400 | 6 | ||
7,6 |
1250 | 550 | 20 |
________________
* Samsuiluna materials (steel).
Notes:
1. The mechanical properties of the materials correspond to average mass fractions of carbon, alloying elements and the minimum density specified in the designation of steel grades.
2. Norms strength tensile, elongation and hardness of the materials are reference and provided for the selection of material grades.
3. For material grades with a density of 7.4 g/cmor more, and samozalechivayuschihsya material properties given for the annealed condition.
4. The need for control of physico-mechanical properties of materials should be specified in normative and technical documentation on specific product or drawing for design documentation.
2. Microstructure of structural powder materials are given in Appendix 1.
3. Compliance designations of structural powder materials previously used in normative and technical documentation are given in Appendix 2.
4. The symbol marks consists of letters and numbers. The letters indicate: U — the material to powder, for the purpose of the material — structural, the rest of the letters on the content of alloying component (D — copper, X — chrome, p — phosphorus, sulfur, M — molybdenum, G — manganese, T — titanium N — Nickel).
The basis of the material in the designation marks are not specified.
The figures after the letters PC, indicate the average mass fraction of carbon in hundredths of percent. Mass fraction of carbon, equal to 1%, in the designation of the grade of material is not indicated.
The figures after the letters indicate the mass fraction in the material of the alloying elements in percentage; the lack of numbers means that the mass proportion of the component is less than or equal to one.
Designation structural powder material consists of a symbol of its brand, a hyphen, and the minimum density (g/cm).
Examples of symbols
Powder steel structural mild with an average mass fraction of carbon of 0.1% and a minimum density of 6.8 g/cm.
PK10−68 GOST 28378−89
Powder steel structural medicalia with an average mass fraction of carbon of 0.4%, Nickel 2%, copper 2% and minimum density of 6.4 g/cm:
ПК40Н2Д2−64 GOST 28378−89
Steel structural chromium powder with an average mass fraction of carbon 1%, chromium 6% and a minimum density of 7.4 g/cm:
ПКХ6−74 GOST 28378−89
5. For more information about the properties and applications of materials are given in Appendix 3.
6 METHODS TO CONTROL
6.1. Determination of chemical composition
6.1.1. Mass fraction of carbon is determined according to GOST 12344.
6.1.2. Mass fraction of copper is determined according to GOST 12355.
6.1.3. Mass fraction of Nickel is determined according to GOST 12352.
6.1.4. Mass fraction of molybdenum is determined according to GOST 12354 series.
6.1.5. Mass fraction of chromium is determined according to GOST 12350.
6.1.6. Mass fraction of manganese is determined according to GOST 12348.
6.1.7. Mass fraction of titanium is determined according to GOST 12356.
6.1.8. Mass fraction of phosphorus determined according to GOST 22536.3 or GOST 2604.4.
6.1.9. Mass fraction of sulfur is determined according to GOST 12345.
6.1.10. Allowed determination of the chemical composition of the materials using other methods of equal precision measurement requirements of the standards. The differences in the assessment results for determination of chemical composition determination is carried out according to GOST 12344, 12345 GOST, GOST 12348, 12350 GOST, GOST 12352, 12354 series GOST, GOST 12355, 12356 GOST, GOST 22536.3 or GOST 2604.4.
6.2. The density of the materials is determined according to GOST 18898.
6.3. The hardness of the materials is determined according to GOST 9012.
6.4. Tensile strength tensile and elongation of materials with a density of at least 7.4 g/cmdetermined according to GOST 18227, with a density of 7.4 g/cmor more — according to GOST 1497.
ANNEX 1 (reference). Microstructure of structural powder materials
ANNEX 1
Reference
Table 3
Mark | Microstructure | |
basis |
other components | |
Mild steel, carbon and copper | ||
PK10* | Ferrite |
Inclusion of perlite |
ПК40* |
Ferrite-perlite | - |
ПК70* |
Perlite | The inclusion of ferrite |
ПК10Ф |
Ferrite doped | The inclusion of pearlite and phosphide |
ПК10Д2Ф |
The inclusion of pearlite and phosphide | |
ПК10Д3 |
Inclusion of perlite | |
ПК10Д3К |
The inclusion of perlite and sulfides | |
ПК10Д5* |
Inclusion of perlite | |
ПК40Д3 |
Ferrite-pearlite alloy | - |
ПК40Д3К |
The inclusion of sulphides | |
ПК40Д3КФ |
The inclusion of sulphides and phosphides | |
ПК70Д3* |
Pearlite alloy | Inclusions, ferrite |
Steel Nickel-molybdenum, medicalese, medinical-molybdenum | ||
ПК10Н2М |
Ferrite doped | Inclusion of perlite |
ПК10Н2Д2 |
||
ПК10Н4Д4 |
||
ПК10Н2Д6М |
||
ПК40НМ** |
Ferrite-pearlite alloy | - |
ПК40Н2М** |
||
ПК40Н2Д2** |
||
ПК40Н3Д2Х** |
||
ПК40Н4Д2М** |
||
ПК40Н2Д2М** |
||
ПК70Н2Д2** |
Pearlite alloy | The inclusion of ferrite |
Of steel chromium, manganese, chromenickel-manganese | ||
ПК70Х3** |
Pearlite alloy | The inclusion of ferrite |
ПКХ6** |
The inclusion of carbides | |
ПК40Х2** |
Ferrite-pearlite alloy | - |
ПК40Г2** |
||
ПК40ХН21** |
||
ПКГ13** |
Austenite | - |
Stainless steel | ||
ПК10Х13М2** | Ferrite chromium | Separate inclusion of granular pearlite and sorbite |
ПК10Х25 | - | |
ПК20Х13** | Perlite granular high-alloyed | The inclusion of carbides |
ПК40Х13М2** |
||
ПК10Х17Н2* |
Austenite-ferrite | Separate inclusion of granular pearlite and sorbite |
ПК10Х18Н9Т |
Austenite | |
ПК10Х18Н15 |
- |
________________
* In the presence of sulfur in the column «other components» added «to the inclusion of sulphides».
** Samsuiluna materials (steel).
Notes:
1. For material grades with a density of 7.4 g/cmor more, and samozalechivayuschihsya materials microstructure are shown for the annealed condition.
2. In the structure of materials are pores.
3. In the structure of materials are not permitted in the free state the alloying elements.
4. In the structure of high-carbon materials are trademarks ПК70, ПК70Д3 valid isolated inclusions of cementite.
ANNEX 2 (informative). Compliance designations of structural powder materials under this standard previously used in normative-technical documentation
ANNEX 2
Reference
Table 4
Mark | Marking materials according to the present standard |
Designation of materials previously used in NTD |
Mild steel, carbon and copper | ||
PK10 | PK10−6,0 |
W-6,0; СП10−60; ПЖ10−60; ZHKO, 3−6,1; ПК10К-62; W-6,2; F-62; Ж10−63; Ж20−62; W-6,3; ПЖ10−63; pancreas; W |
PK10−6,4 | ЖГр0,2−6,5, 6,5; Ж10−66; СП10−66; ПЖ10−66; ZHKO, 3−6,7; W-00−1; ЖГр0,2−1 | |
PK10−6,8 | Well-6,8; ПК10К-68; W-7,0; ЖГр0,2−7,0; СП10−70; Ж10−70; ПЖ10−70; ЖГр0,2−2 | |
PK10−7,2 |
Ж10−72; Ж10−74; СП10−74; a10; П20; ПЖ10−74 | |
PK10−7,6 |
Ж10−76; СП20−76; Ж20−76; ПЖ10−77; Ж20−77; P-10; Ж10−77 | |
ПК40 | ПК40−6,0 | Ж60−57; Ж50−58; СП40−60; Ж50−60; ПЖ50−60; ПЖ50−63; Ж50−63 |
ПК40−6,4 |
ЖГр0,5−6,5; Ж50−66; ПЖ50−66; ЖГр0,5−1 | |
ПК40−6,8 |
Ж50−70; ЖГр0,5−7,0; СП40−70; ПЖ50−70; ЖГр0,5−2 | |
ПК40−7,2 |
Ж50−72; P-50 | |
ПК40 to 7.6 |
СП40−76; Ж50−76; ПЖ50−77; the RV-50; P-50; P50; ПЖ50; ПЖ30 | |
ПК70 | ПК70−6,0 | ЖГр1,2−5,7; ЖГр1−6,0; ПЖ70−6,0; ПЖ100−60; ЖГр1−60; ЖГр1−6,2; ЖГр1−6,3; Ж80−63 |
ПК70−6,4 | HUD-6,4; ЖГр1−6,5; Ж70−66; ПЖ70−67; ЖГр1,2−6,4; ЖГр1−1 | |
ПК70−6,8 | ПЖ10Ч30−69; ПЖ10Ч20−69; ЖГр1−7,0; ЖЧ30−7,1; ZHCH-72; ЖГр1−2; ЖЧ20−7,1; ЖГр1,2−6,8 | |
ПК70 of 7.4 | СП90−76; Ж90−76; ПЖ70−77; Ж70−77; ЖЧ20; ЖЧ30; ZHCH-20; P-120; P-80; ПЖ90 | |
ПК10Ф | ПК10Ф-6,8 | ЖФ1−6,5; ЖФ1−6,8 |
ПК10Д2Ф | ПК10Д2Ф-6,0 | ЖФ1Д2−6,1; Ж10Ф1Д2−61; Ж10Ф1Д2−63; ЖФ1Д2 |
ПК10Д3 | ПК10Д3−6,0 | ЖД3−60; СП10Д3−60; ПЖ10Д3−60; Ж10Д3−60; ПЖ15Д2−60; ПЖ15Д3−60; TRAIN (2,5−3,0)-6,1; ЖД3−6,1; ЖД3−62; ЖД3−63; ЖД10Д3−63; ЖД3,5−63; ЖД3; ПЖД3; ПКД2−6,0 |
ПК10Д3−6,4 | ЖД3−65; ЖГр0,2Д3−6,5; ПЖ15Д2; ЖГр0,1Д2−66; Ж10Д3−66; ЖД3−66; ПЖ15Д2−66; ПЖ15Д3−66; PC-10Д3−6,7; ПЖ10Д3−67; ЖГр0,2Д3−2; | |
ПК10Д3−6,8 | ЖГр0,2Д3−7,0; Ж10Д3−70; СПД3−70; СП10Д3−70; ПЖ10−70; ЖГр0,2Д3−2 | |
ПК10Д3 of 7.4 | ПЖ10Д3−77; PC-10Д2−7,7; П10Д; P-10D, P-10Д2; P-10Д3 | |
ПК10Д3К | ПК10Д3К-6,0 | ПЖ20Д2К-60; ПЖ20Д3К-60; railway/2,5−3,0/K0,5−6,1; ПЖ20Д2К-62; ПЖ20Д3К-62; ПЖ10Д3К0,4−63 |
ПК10Д3К-6,4 | ЖД3К0,3−65; ПЖ20Д2К-66; ПЖ20Д3К-66; ПЖ10Д3К0, 5; Railway/2,4−3,0/K0,4 | |
ПК10Д5 | ПК10Д5−6,0 |
ЖГр0,25Д5−60; ЖД5,0−6,2; ПЖ15Д5−62; ЖД5−62; ЖД5−6,3; ЖД5−1 |
ПК10Д5−6,4 |
ЖД5−64; ЖГр0,25Д5−66; ПЖ15Д5−66 | |
ПК10Д5−6,8 |
- | |
ПК10Д5 of 7.4 |
СП10Д5−76; PC-10Д5−77; P-10Д4 | |
ПК40Д3 | ПК40Д3−6,0 | Ж40Д3−58; Ж50Д3−60; ПЖ50Д3−60; ЖГр0,5Д2,5−6,0; ПЖ50Д1,5−61; ЖГр0,8Д3−6,1; ПЖ50Д3−63; ПЖ50Д1,5−63; ЖГр0,5Д3−1 |
ПК40Д3−6,4 | Ж50Д3−66; ПЖ50Д3−66; ЖГр0,5Д3−2; ЖГр0,5Д1,5−6,4; ЖГр0,5Д2,5−6,7; | |
ПК40Д3К | ПК40Д3К-6,0 | Ж30Д3К0,4−60; ПЖ35Д2К-60; ПЖ35Д3К-60; ПЖ40Д2К-60; ПЖ40Д3К-60; ЖГр0,5Д2,5К0,3 |
ПК40Д3К-6,4 | ПЖ35Д2К-66; ПЖ35Д3К-66; ПЖ40Д2К-66; ПЖ40Д3К-66; ЖГр0,5Д2,5К0,3 | |
ПК40Д3КФ | ПК40Д3КФ-6,0 | ПЖ40Д2КФ-60; ПЖ40Д3КФ-60 |
ПК40Д3КФ-6,4 | ПЖ40Д2КФ-66; ПЖ40Д3КФ-66 | |
ПК70Д3 | ПК70Д3−6,0 | ПЖ70Д3−60; ЖГр1Д3−6,3; Ж80Д3−63; ПЖГр1Д3−1; ЖГр1,5Д2,5К0,5; ЖГр1,5Д2,5; ЖГр1Д3−1; ЖГр1,2Д2,5−6,1; ЖГр1,2Д2,5К0,8 |
ПК70Д3−6,4 | ЖГр1Д3−64; ЖГр1Д3−6,5; СП100Д3−65; Ж70Д3−66; Ж70Д3−67; ПЖ100Д3−67; ЖГр1Д3−2; ЖГр1,2Д2,5−6,4 | |
ПК70Д3−6,8 | Ж70Д3−69; ЖГр1Д3−7,0; СП100Д3−7,0; ЖГр1,2Д2,5−6,8; ЖГр1Д3−2 | |
ПК70Д3 of 7.4 | PC-60Д3−75 | |
Steel Nickel-molybdenum, medicalese, medinical-molybdenum | ||
ПК10Н2М | ПК10Н2М-6,8 |
10Н0,5M-1; 10Н2М-1 |
ПК10Н2М-7,2 |
10Н0,5M-2; 10NM-2; 10Н2М-2 | |
ПК10Н2М to 7.6 |
- | |
ПК10Н2Д2 | ПК10Н2Д2−6,4 |
ЖД3Н2−6,0; ЖД3Н2−6,3; ЖД3Н2−6,6; PC-10Н2Д2М-6,7 |
ПК10Н2Д2−6,8 |
Ж10Д3Н2−70 | |
ПК10Н2Д2−7,2 |
ЖД2Н3М-7,0−7,4; P-20Д2Н2 | |
ПК10Н2Д2 to 7.6 |
П20Д2Н2; PC-10Н3Д2; P-20Н3Д1,5M; P-D1,5Н2М | |
ПК10Н4Д4 | ПК10Н4Д4−6,4 | ЖД5Н5−6,0; ПК10Н4Д2−60; ЖД2Н5−6,0; ЖД5Н5−6,3; ЖГр0,4Д4Н3−6,3; ЖД5Н5−6,6; СП10Н4Д5−66; Ж10Н4Д2−66 |
ПК10Н4Д4−6,8 | ПК10Н5Д2−67; ПК10Д6Н4−69; ЖД2Н1,5−6,8; ЖН4Д2−70; СП10Н4Д5−70; ЖГр0,4Д4Н3−7,0, ПК10Д6Н4−73; Ж10Н4Д2−70; ПК10Н4Д2−69 | |
ПК10Н2Д6М |
ПК10Н2Д6М of 7.4 |
P-Д5Н3М; P-Д6Н2,5M; ПД5Н3М |
ПК40НМ | ПК40БМ-6,8 |
30NM-1; 40Н0,5M-1 |
ПК40НМ-7,2 |
40Н0,5M-2; 30NM-2 | |
ПК40НМ to 7.6 |
- | |
ПК40Н2М | ПК40Н2М-6,4 |
СП50Н2М0,2−65; МГр0,5Н2М-65 |
ПК40Н2М-6,8 |
ЖГр0,5Н2М-7,0; СП50Н2М0,2−70; 30Н2М-1; 50Н2М-1 | |
ПК40Н2М-7,2 |
50Н2М-2; 30Н2М-2; 30Н2МА-2 | |
ПК40Н2М to 7.6 |
Ж30Н3М-76; PC-35Н2М-76; СП40Н2; 5М0,5−76; Ж60Н3М-76 | |
ПК40Н2Д2 | ПК40Н2Д2−6,4 |
ПЖ30Н4Д2−60; ЖД3Н2−6,0; ПЖ50Н4Д3−6,3; Ж50Д3Н2−63; ЖГр1Д2 5H3−6,3; ЖГр1Д1,5H3−6,3; Ж50Н4Д2−66; ПЖ50Н3Д2−66; ЖГр0,6Н2Д1,5−66; ПК30Н4Д2−67 |
ПК40Н2Д2−6,8 |
PC-50Н3Д2−6,8; СП40Н2Д2−70; Ж50Н3Д2−70; Ж50Д3Н270; ЖГр0,6Н2Д1,5−70 | |
ПК40Н2Д2 of 7.4 |
P-45Д2Н2 AND 7.55; PC-35Н3Д2−7,6; СП40Н2Д2−76; СП40Н2Д0,5−76; ПЖ30Н2Д2−77; ПЖ50Н4Д3−7,82; P-30Д2Н3; P-30Д3Н2; P-30Д2Н2 | |
ПК40Н3Д2Х | ПК40Н3Д2Х-6,4 |
Ж40Н3Д2Х-66; PC-35ХН3Д2−6,7 |
ПК40Н3Д2Х-6,8 |
- | |
ПК40Н2Д2М |
ПК40Н2Д2М-6,8 |
PC-45Н2Д2М-6,8; ЖД2Н3М-7,0 |
ПК40Н2Д2М of 7.4 |
P-30Н3Д1,5M; P-45Н3Д1,5M | |
ПК40Н4Д2М | ПК40Н4Д2М-6,8 |
PC-35Н5Д2М; PC-45Н4Д2М-6,8 |
ПК40Н4Д2М of 7.4 |
P-Д2Н4М | |
ПК70Н2Д2 |
ПК70Н2Д2−6,4 | ПЖ60Н2Д2−60; ПЖ60Н2Д2−67 |
ПК70Н2Д2−6,8 |
PC-60Н2Д2−6,8; ПК60Н2Д2−68 | |
PC-60Н3Д2 OF 7.4 |
PC-60Н3Д2−7,5 | |
Of steel chromium, manganese, chromenickel-manganese | ||
ПК70Х3 | ПК70Х3−6,4 |
Ж70Х2−61; Ж80Х4−62; ЖГр1Х3−6,5 |
ПК70Х3−6,8 |
ЖГр1Х3−7,0 | |
ПКХ6 | ПКХ6 of 7.4 |
PC-90Х7−7,4; Ж90Х7−76 |
ПК40Х2 | ПК40Х2−6,4 |
ЖГр0,5X6,5; PC-60Х2−6,6; PC-35Х2−6,7 |
ПК40Х2−6,8 |
ЖГр0,5X-7,0 | |
ПК40Х2 of 7.4 |
PC-60Х2−7,5; Ж40Х-76; PC-35Х2 TO 7.6 | |
ПК40Г2 |
ПК40Г2 of 7.4 | PC-60Г2−7,5; Ж40Г2−76; П30Г2; P-30Г3 |
ПК40ХН2Г | ПК40ХН2Г-6,4 |
- |
ПК40ХН2Г-6,8 |
- | |
ПК40ХН2Г of 7.4 |
- | |
ПКГ13 |
ПКГ13 of 7.4 | P-110Г13 |
Stainless steel | ||
ПК10Х13М2 |
ПК10Х13М2 of 7.4 | PH13M2 |
ПК10Х25 | ПК10Х25 of 7.4 |
ЖХ25−73; ЖХ25−75 |
ПК20Х13 | ПК20Х13−6,4 |
Ж20Х13−64; Ж15Х14−66 |
ПК20Х13−6,8 |
Ж20Х13−69 | |
ПК20Х13 of 7.4 |
Ж20Х13−74 | |
ПК40Х13М2 | ПК40Х13М2 of 7.4 |
PC-40Х13М2−74 |
ПК10Х17Н2 | ПК10Х17Н2−6,8 |
Ж10Х17Н2−6,9; Ж10Х17Н2−70 |
ПК10Х17Н2 of 7.4 |
Ж10Х17Н2−7,3; Ж10Х17Н2−74; Ж10Х17Н2−7,5; Ж10Х17Н2−76 | |
ПК10Х18Н9Т | ПК10Х18Н9Т-6,4 |
ПХ18Н9−6,4 |
ПК10Х18Н9Т-6,8 |
PH18N9T-6,8 | |
ПК10Х18Н9Т-7,2 |
Ж10Х18Н9Т-73 | |
ПК10Х18Н9Т to 7.6 |
ПК18Н9Т-7,7 | |
ПК10Х18Н15 | ПК10Х18Н15−6,4 |
PH18N15−6,4; ЖХ18Н15−6,7 |
ПК10Х18Н15−6,8 |
PH18N15−70; ЖХ18Н15−70 | |
ПК10Х18Н15−7,2 |
- | |
ПК10Х18Н15 to 7.6 |
PH18N15−7,8 |
APPENDIX 3 (recommended). For more information about the properties and applications of materials
APPENDIX 3
Recommended
Table 5
The designation of grades according to GOST | Designation of materials according to GOST | The main applications of | Characterization of properties and types of additional processing* |
PK10 | PK10−6,0 |
Products porous unloaded | 1; 7.1 |
PK10−6,4 |
|||
PK10−6,8 |
|||
ПК40 | ПК40−6,0 |
1; 4 | |
ПК40−6,4 |
|||
ПК40−6,8 |
|||
ПК10Д3 | ПК10Д3−6,0 |
1; 2; 7.1 | |
ПК10Д3−6,4 |
|||
ПК10Д3К | ПК10Д3К-6,0 |
1; 2; 3; 7.1 | |
ПК10Д3К-6,4 |
|||
ПК10Д5 | ПК10Д5−6,0 |
1; 7.2 | |
ПК10Д5−6,4 |
|||
ПК10Ф | ПК10Ф-6,8 |
1; 6 | |
ПК10Д2Ф | ПК10Д2Ф-6,0 |
1 | |
ПК10Н2М | ПК10Н2М-6,8 |
1; 5; 7.1 | |
ПК10Н2Д2 | ПК10Н2Д2−6,4 |
Products porous light duty | 1; 7.1 |
ПК10Н2Д2−6,8 |
|||
ПК40Д3 | ПК40Д3−6,0 |
1; 2; 4 | |
ПК40Д3−6,4 |
|||
ПК40Д3К | ПК40Д3К-6,0 |
1; 2; 3; 4 | |
ПК40Д3К-6,4 |
|||
ПК40Д3КФ | ПК40Д3КФ-6,0 |
||
ПК40Д3КФ | ПК40Д3КФ-6,4 |
1; 3; 4 | |
ПК40Н2Д2 |
ПК40Н2Д2−6,4 | 4; 5 | |
ПК40Н3Д2Х |
ПК40Н3Д2Х-6,4 | ||
ПК10Д3 |
ПК10Д3−6,8 |
1; 2; 7.1 | |
ПК10Д5 |
ПК10Д5−6,8 |
1; 7.2 | |
ПК10Н4Д4 | ПК10Н4Д4−6,4 |
Products porous srednekaloriynye | 1; 2.4; 7.1 |
ПК10Н4Д4−6,8 |
|||
ПК40Н2Д2 | ПК40Н2Д2−6,8 |
4; 5; 7.3 | |
ПК40ХН2Г |
ПК40ХН2Г-6,8 |
||
ПК40Х2 | ПК40Х2−6,8 |
4; 7.3 | |
ПК40НМ | ПК40НМ-6,8 | 1; 4; 7.3 | |
ПК40Н2М | ПК40Н2М-6,8 | 1; 4; 5; 7.3 | |
ПК40Н2Д2М |
ПК40Н2Д2М-6,8 |
Products loaded porous | 4; 5; 7.3 |
ПК40Н4Д2М |
ПК40Н4Д2М-6,8 |
||
ПК40Н3Д2Х |
ПК40Н3Д2Х-6,8 |
||
ПК40НМ | ПК40НМ-7,2 |
1; 4; 7.3 | |
ПК40Н2М | ПК40Н2М-7,2 |
1; 4; 5; 7.3 | |
ПК70 | ПК70−6,0 |
Products porous wear-resistant | 7.3 |
ПК70−6,4 |
|||
ПК70−6,8 |
|||
ПК70Д3 | ПК70Д3−6,0 |
||
ПК70Д3−6,4 |
|||
ПК70Д3−6,8 |
|||
ПК70Н2Д2 | ПК70Н2Д2−6,4 |
||
ПК70Н2Д2−6,8 |
|||
ПК70Х3 | ПК70Х3−6,4 |
Products porous and highly wear-resistant | 7.3 |
ПК70Х3−6,8 |
|||
PK10 | PK10−7,2 | Products light duty dense |
1; 7.1 |
PK10−7,6 |
|||
ПК40 | ПК40−7,2 |
Products dense srednekaloriynye | 1; 4; 7.3 |
ПК40 to 7.6 |
|||
ПК10Д3 |
ПК10Д3 of 7.4 | 1; 7.1; 7.2 | |
ПК10Н2Д2 | ПК10Н2Д2−7,2 |
1; 7.1 | |
ПК10Н2Д2 to 7.6 |
|||
ПК10Н2М | ПК10Н2М-7,2 |
1; 5; 7.1 | |
ПК10Н2М to 7.6 |
|||
ПК40Н2Д2 | ПК40Н2Д2 of 7.4 |
Products of thick heavy-duty | 4; 5; 7.3; 7.4 |
ПК40Н2Д2М | ПК40Н2Д2М of 7.4 |
||
ПК40НМ | ПК40НМ to 7.6 |
1; 4; 5; 7.3; 7.4 | |
ПК40Н2М |
ПК40Н2М to 7.6 | ||
ПК10Д5 |
ПК10Д5 of 7.4 | 7.2 | |
ПК10Н2Д6М |
ПК10Н2Д6М of 7.4 |
||
ПК70 |
ПК70 of 7.4 | Products dense wear-resistant | 7.3 |
ПК70Д3 |
ПК70Д3 of 7.4 | ||
ПК70Н2Д2 |
ПК70Н2Д2 of 7.4 | 7.3; 7.4 | |
ПК40Х2 | ПК40Х2 of 7.4 | A dense wear-resistant products that are exposed to high impact loads | 4; 5; 7.3; 7.4 |
ПК40Г2 |
ПК40Г2 of 7.4 | ||
ПК40ХН2Г |
ПК40ХН2Г of 7.4 | ||
ПК40Н4Д2М |
ПК40Н4Д2М of 7.4 | ||
ПКХ6 |
ПКХ6 of 7.4 | Products dense and highly wear-resistant | 7.3; 7.4 |
ПКГ13 |
ПКГ13 of 7.4 | ||
ПК20Х13 | ПК20Х13−6,4 | Products wear-resistant and corrosion-resistant | 8.1; 7.4 |
ПК10Х17Н2 | ПК10Х17Н2−6,8 | 8.2; 7.4 | |
ПК10Х18Н9Т | ПК10Х18Н9Т-6,4 |
Products porous corrosion resistant | 1; 3; 7.1; 8.3 |
ПК10Х18Н9Т-6,8 |
|||
ПК10Х18Н15 | ПК10Х18Н15−6,4 |
||
ПК10Х18Н15−6,8 |
|||
ПК10Х18Н15 |
ПК10Х18Н15−7,2 | 1; 3; 7.1; | |
ПК10Х18Н9Т |
ПК10Х18Н9Т-7,2 | 8.3; 9; 10 | |
ПК20Х13 | ПК20Х13 of 7.4 | Products dense wear resistant and corrosion resistant | 8.1; 7.4 |
ПК40Х13М2 |
ПК40Х13М2 of 7.4 | ||
ПК10Х17Н2 |
ПК10Х17Н2 of 7.4 | 8.2; 7.4 | |
ПК10Х18Н9Т | ПК10Х18Н9Т to 7.6 | Products dense Vysokoskorostnye | 1; 3; 7.1; 8.4; 8.5 |
ПК10Х18Н15 |
ПК10Х18Н15 to 7.6 | 5; 8; 9; 10 | |
ПК10Х25 |
ПК10Х25 to 7.6 | 1; 7.4; 8.4; 9; 11 |
________________
* The symbol characteristics of the properties and types of additional processing:
1 — products that are subjected to calibration with the aim of obtaining accurate sizes;
2 — products with a slight change of dimensions during sintering;
3 — products that are well processed by cutting.
4 — products with moderate wear-resistance;
5 — products with high impact strength;
6 — magnetic products;
7 — products that undergo heat treatment according to the current NTD:
7.1 — chemical and thermal;
7.2 — aging;
7.3 — hardened and tempered;
7.4 — annealing to improve machinability.
8 — product corrosion-resistant:
8.1 — in atmospheric conditions;
8.2 — in a slightly aggressive media;
8.3 — corrosive environments;
8.3 in aggressive environments, in addition to boiling solutions of salts and acids;
8.4 — in harsh environments, including boiling solutions of salts and acids;
8.5 — resistant to intergranular corrosion.
9 — heat-resistant products.
10 — product-temperature.
11 — products with a stable coefficient of thermal expansion.
12 — all products, if necessary, can be subjected to protective coatings on the existing NTD.
13 — all products, excluding those containing copper, can be subjected to welding.