Steel 28Х3СНМВФА (СП28; ЭП326А)
Steel 35KhSN3M1A (VKS-8)
Steel 30Kh2GSN2VM (30Kh2GSN2M1; VL-1)
Steel 30Kh2GSNVM (VL-1D)
Steel 30Х2Н2СВМФА (VKS-3)
Steel 30KhGSN2A (30KhGSNA)
Steel 30KhGSN2MA (30KhGSNMA)
Steel 30ХН3М1ФА (30ХН3М1Ф)
Steel 30ХН3М2ФА (30ХН3М2Ф)
Steel 32KhN8M1FK5A (VKS-6)
Steel 34KhMA (34KhM)
Steel 34KhN3MA (0KhN3M)
Steel 35KhMA (35KhMAR)
Steel 35KhN1M2FA
Steel 35KHN3MFA (35KHN3MFAR)
Steel 35ХС2Н3М1ФА (VKS-9)
Steel 28ХНН3МФА (28ХН3МФ)
Steel 36KHN3MFA (36KHN3MF)
Steel 38Kh3SNMVFA (SP38)
38KhMFYUA steel
38KhN3MFA steel (38KhN3MF)
40GMFR steel
Steel 40KhN2SVA (EI643)
Steel 40KhN2SMA (EI643M)
Steel 42Kh2GSNM (VKS-1)
43Kh3SNMVFA steel (SP43)
Steel 45Г15Н9Х2ЮФ (EP769)
45Kh3NM2FA steel
Steel АЦ28ХГН2АФБ
Steel АЦ28ХГН3ФТ
B2G steel
X11MNAFB steel
20KhGSNM steel
Steel 01N17K12M5T (EP845; VKS-240)
Steel 02N18K9M5T (EP637A; VKS-210)
Steel 03N18K8M5T (VKS-170; EK21)
Steel 03N19K6M5TR (EP631)
Steel 03Cr14H7V
Steel 08Х15Н25Т2МФР (EP674)
Steel 09Х16НМ2Д (EP887; VNS28)
Steel 120G13 (EI256)
12Kh3GNMFBA steel
Steel 15Х16Н3КАМФ2 (VNS-47; EK81)
15Kh2GMF steel
15Kh2NMFA steel
Steel 16X16H3MAD (EP811; VSN21)
Alloy 20ХГСН2МФА (DI107)
Steel 28Kh3SNMVFA (SP28; EP326A)
Steel 25Х12Н2В2М2Ф (EP311; VNS-6)
Steel 25Х20Н9В2М (EP466)
Steel 25Kh2GNTA
Steel 25Х2ГНТРА
Steel 25Х2Н4МФА
Steel 25Kh2NMF (25Kh2NMFA)
Steel 25KhGSNMA
Steel 25KhN3MFA (25KhN3MFAR)
Steel 25ХСНВФА (VP25)
Steel 26ХН3М2ФА (26ХН3М2ФАA)
Steel 26KhN3MF (26KhN3MFA)
Steel 26KhN4MF (26KhN4MFA)
Steel 27ХН3М2ФА (27ХН3М2Ф)
Steel 27ХН3МФА (27ХН3МФ)
To access the entire list
Designation
Description
28Х3СНМВФА steel is used: for the manufacture of ingots, tube billets, forgings, rolled rings, sheet and hot-rolled bars and strips intended for the manufacture of various components of heavy and power engineering.
Standards
Chemical composition
Fe is the basis.
According to TU 14-1-871-74, the chemical composition is given for steel grade 28Х3СНМВФА-ВД (СП28-ВД).
According to TU 14-1-991-74 the chemical composition is given for steel grade 28Х3СНМВФА-ВД (СП28-ВД; ЭП326А-ВД). It is allowed to increase the content of sulfur and phosphorus by about 0010% with a total content of sulfur and phosphorus not more than 0.020%. Deviations in chemical composition are allowed: carbon ± 0.010%, manganese + 0.050 / -0.20%, silicon, chromium, nickel and tungsten ± 0.050% each, molybdenum ± 0.030%, vanadium +0.020%. Partial or complete replacement of tungsten with molybdenum is allowed, based on: 2.2 parts by weight of tungsten are replaced by one part by weight of molybdenum. When the tungsten is completely replaced, the molybdenum content should be in the range 0.75-0.95%.
According to TU 14-1-4461-88, the chemical composition of the steel should comply with the standards specified in Table 2 (Appendix 1), sent on request by the Central Research Institute of Chemical Technology named after Bardin. The sulfur content of sulfur is not more than 0.011%, phosphorus is not more than 0.015%, while the total content of sulfur and phosphorus should not be more than 0.022%. The residual copper content should not be more than 0.15%. With the consent of the consumer, it is allowed - up to 0.20%. In the finished sheets the following deviations in chemical composition from the norms indicated in Table 2 are allowed: carbon + 0.02 / -0.010%; tungsten ± 0.10%; manganese, silicon, chromium and nickel ± 0.050%; molybdenum ± 0.030%; vanadium +0.020%. Partial or complete replacement of tungsten by molybdenum from the calculation of 2.5 mass fraction of tungsten is allowed with one mass fraction of molybdenum.
According to TU 14-1-1447-75 the chemical composition is given for steel grade 28Х3СНМВФА (СП28). The sum of sulfur and phosphorus should not exceed 0.022%. It is allowed to increase the content of sulfur or phosphorus by 0.0010% with a total content of no more than 0.022%. Deviations in the established norms for the chemical composition are allowed: carbon ± 0.010%, chromium, nickel, silicon, manganese, tungsten ± 0.050%, molybdenum ± 0.030%, vanadium + 0.020%. Full or partial replacement of tungsten with molybdenum is allowed at the rate of 2.5 parts by weight of tungsten is replaced by one part by weight of molybdenum. When molybdenum is completely replaced by tungsten, the molybdenum content should be 0.75-0.95%. In the case of partial replacement of tungsten with molybdenum, the actual content of tungsten is recalculated to molybdenum in a ratio of 2.5: 1 and the conditional total molybdenum and tungsten content in terms of molybdenum should correspond to the specified molybdenum content when the tungsten is completely replaced. In steel without the replacement of tungsten by molybdenum, the residual molybdenum content of 0.10% is allowed. With the complete replacement of tungsten by molybdenum, the residual content of tungsten is allowed up to 0.15%.
According to TU 14-1-871-74, the chemical composition is given for steel grade 28Х3СНМВФА-ВД (СП28-ВД).
According to TU 14-1-991-74 the chemical composition is given for steel grade 28Х3СНМВФА-ВД (СП28-ВД; ЭП326А-ВД). It is allowed to increase the content of sulfur and phosphorus by about 0010% with a total content of sulfur and phosphorus not more than 0.020%. Deviations in chemical composition are allowed: carbon ± 0.010%, manganese + 0.050 / -0.20%, silicon, chromium, nickel and tungsten ± 0.050% each, molybdenum ± 0.030%, vanadium +0.020%. Partial or complete replacement of tungsten with molybdenum is allowed, based on: 2.2 parts by weight of tungsten are replaced by one part by weight of molybdenum. When the tungsten is completely replaced, the molybdenum content should be in the range 0.75-0.95%.
According to TU 14-1-4461-88, the chemical composition of the steel should comply with the standards specified in Table 2 (Appendix 1), sent on request by the Central Research Institute of Chemical Technology named after Bardin. The sulfur content of sulfur is not more than 0.011%, phosphorus is not more than 0.015%, while the total content of sulfur and phosphorus should not be more than 0.022%. The residual copper content should not be more than 0.15%. With the consent of the consumer, it is allowed - up to 0.20%. In the finished sheets the following deviations in chemical composition from the norms indicated in Table 2 are allowed: carbon + 0.02 / -0.010%; tungsten ± 0.10%; manganese, silicon, chromium and nickel ± 0.050%; molybdenum ± 0.030%; vanadium +0.020%. Partial or complete replacement of tungsten by molybdenum from the calculation of 2.5 mass fraction of tungsten is allowed with one mass fraction of molybdenum.
According to TU 14-1-1447-75 the chemical composition is given for steel grade 28Х3СНМВФА (СП28). The sum of sulfur and phosphorus should not exceed 0.022%. It is allowed to increase the content of sulfur or phosphorus by 0.0010% with a total content of no more than 0.022%. Deviations in the established norms for the chemical composition are allowed: carbon ± 0.010%, chromium, nickel, silicon, manganese, tungsten ± 0.050%, molybdenum ± 0.030%, vanadium + 0.020%. Full or partial replacement of tungsten with molybdenum is allowed at the rate of 2.5 parts by weight of tungsten is replaced by one part by weight of molybdenum. When molybdenum is completely replaced by tungsten, the molybdenum content should be 0.75-0.95%. In the case of partial replacement of tungsten with molybdenum, the actual content of tungsten is recalculated to molybdenum in a ratio of 2.5: 1 and the conditional total molybdenum and tungsten content in terms of molybdenum should correspond to the specified molybdenum content when the tungsten is completely replaced. In steel without the replacement of tungsten by molybdenum, the residual molybdenum content of 0.10% is allowed. With the complete replacement of tungsten by molybdenum, the residual content of tungsten is allowed up to 0.15%.