GOST 13047.23-2002
INTERSTATE STANDARD
NICKEL. COBALT
METHOD FOR THE DETERMINATION OF TELLURIUM IN NICKEL
THE INTER-STATE COUNCIL
FOR STANDARDIZATION, METROLOGY AND CERTIFICATION
Minsk
Preface
1 DEVELOPED by Interstate technical committees for standardization MTK 501 Nickel and MTC 502 «Cobalt», JSC «Gipronikel ' Institute»
INTRODUCED by Gosstandart of Russia
2 ADOPTED by the Interstate Council for standardization, Metrology and certification (Protocol № 21 dated may 30, 2002)
The adoption voted:
The name of the state | The name of the national authority for standardization |
The Republic Of Azerbaijan | Azgosstandart |
The Republic Of Armenia | Armastajad |
The Republic Of Belarus | Gosstandart Of The Republic Of Belarus |
Georgia | Gosstandart |
The Kyrgyz Republic | Kyrgyzstandard |
The Republic Of Moldova | Moldovastandart |
Russian Federation | Gosstandart Of Russia |
The Republic Of Tajikistan | Tajikstandart |
Turkmenistan | The MDCSU «Turkmenstandartlary» |
The Republic Of Uzbekistan | Standards |
Ukraine | Gosstandart Of Ukraine |
3 Resolution of the State Committee of the Russian Federation for standardization and Metrology dated 17 September 2002 No. 334-St inter-state standard GOST 13047.23−2002 introduced directly as state standard of the Russian Federation from July 1, 2003
4 INTRODUCED FOR THE FIRST TIME
The CONTENTS
1 Scope 2 Normative references 3 General requirements and safety requirements 4 Atomic absorption method 4.1 Method of analysis 4.2 measuring instruments, auxiliary devices, materials, reagents, solutions 4.3 Preparation for analysis 4.4 analysis 4.5 Processing the analysis results 4.6 accuracy Control analysis Annex A Bibliography |
GOST 13047.23−2002
INTERSTATE STANDARD
NICKEL. COBALT
Method for the determination of tellurium in Nickel
Nickel. Cobalt. Method for determination of tellurium in nickel
Date of introduction 2003−07−01
1 Scope
This standard establishes the atomic absorption method for the determination of tellurium at a mass proportion of 0,00002% to 0,0010% in primary Nickel GOST 849.
2 Normative references
The present standard features references to the following standards:
GOST 849−97 Nickel primary. Specifications
GOST 4461−77 nitric Acid. Specifications
GOST 9722−97 Nickel Powder. Specifications
GOST 10157−79 Argon gaseous and liquid. Specifications
GOST 11125−84 nitric Acid of high purity. Specifications
GOST 13047.1−2002 Nickel. Cobalt. General requirements for methods of analysis
3 General requirements and safety requirements
General requirements for methods of analysis and safety requirements when performing work — according to GOST 13047.1.
4 Atomic absorption method
4.1 Method of analysis
The method is based on measuring absorption at a wavelength of 214,3 nm resonance radiation by atoms of tellurium resulting from the electrothermal atomization of the sample solution.
4.2 measuring instruments, auxiliary devices, materials, reagents, solutions
Atomic absorption spectrophotometer measurements with electrothermal atomization, the correction non-selective absorption and the automated flow of the solution into the atomizer.
Lamp with hollow cathode for the excitation of spectral lines of tellurium.
Argon gas according to GOST 10157.
Filters obestochennye [1] or other medium density.
Nitric acid according to GOST 4461, if necessary, purified by distillation, or according to GOST 11125, diluted 1:1, 1:9 and 1:19.
Nickel powder according to GOST 9722 or standard sample of Nickel with the prescribed mass fraction of tellurium is not more than 0,00002%.
Tellurium of high purity [2].
Solutions of tellurium concentration.
The solution And the mass concentration of tellurium 0.0001 g/cm3: in a glass with a capacity of 100 cm3 is placed a portion of the tellurium mass 0,1000 g, pour 10 — 15 cm3 of nitric acid, diluted 1:1, dissolved by heating, boil 2 — 3 minutes, cool, transfer the solution into a measuring flask with volume capacity of 1000 cm3, flow of 50 cm3 of nitric acid, diluted 1:1, and topped to the mark with water.
Solution B mass concentration of tellurium 0,00001 g/cm3: in a volumetric flask with a capacity of 100 cm3 is taken 10 cm3 of solution A and pour to the mark with nitric acid, diluted 1:19.
Solution of the mass concentration of tellurium 0,000001 g/cm3: in a volumetric flask with a capacity of 100 cm3 is taken 10 cm3 of a solution and topped up to the mark with nitric acid, diluted 1:19.
The solution G of the mass concentration of tellurium 0,0000002 g/cm3: in a volumetric flask with a capacity of 100 cm3 is taken in 20 cm3 of solution and topped up to the mark with nitric acid, diluted 1:19.
4.3 Preparation for analysis
4.3.1 For calibration chart 1 in determining the mass fraction of tellurium is not more than 0,00010% in beakers or flasks with a capacity of 250 cm3 place hitch weight 1,000 g sample of Nickel powder or standard sample of Nickel with the prescribed mass fraction of tellurium. The number of batches must match the number of points of calibration curve, including Supervisory experience.
The sample flow 15 — 20 cm3 of nitric acid, diluted 1:1 and dissolved by heating. When using the Nickel powder in the solutions were filtered through filters (red or white ribbon), washed 2 — 3 times with nitric acid, diluted 1:9, the filters are washed 2 — 3 times with hot water. The solutions were evaporated to a volume of 10 — 15 cm3, flow 40 — 50 cm3 of water, heated to boiling, cooled, transferred to volumetric flasks with a capacity of 100 cm3.
In the flask is taken 1,0; 2,0; 3,0; 4,0; 5,0 cm3 of solution G in the flask with the solution in the reference experiment, a solution of tellurium is not administered, made up to the mark with water and measure the absorbance as indicated in 4.4.
Mass of tellurium in the solutions for calibration curve 1 is 0,0000002; 0,0000004; 0,0000006; 0,0000008; 0,0000010 G.
4.3.2 For calibration curve 2, when determining the mass fraction of tellurium more than 0,00010% in beakers or flasks with a capacity of 250 cm3 place the sample weighing 0,500 g sample of Nickel powder or standard sample of Nickel with the prescribed mass fraction of tellurium. The number of batches must match the number of points of calibration curve, including Supervisory experience.
The sample is dissolved as specified
Mass of tellurium in the solutions for calibration curve 2 is 0,0000005; 0,0000010; 0,0000020; 0,0000030; 0,0000040; 0,0000050 G.
4.4 analysis
In a glass or flask with a capacity of 250 cm3 place the weighed sample mass of 1,000 g in determining the mass fraction of tellurium is not more than 0,00010% or weighing 0,500 g in determining the mass fraction of tellurium more than 0,00010%, pour 15 — 20 cm3 of nitric acid, diluted 1:1, evaporated to a volume of 5 — 7 cm3, transfer the solution into volumetric flask with a capacity of 100 cm3, cooled and topped to the mark with water.
Measure the absorbance of the sample solution and solutions for calibration at a wavelength of 214,3 nm, slit width is not more than 1.0 nm with a correction non-selective absorption in the current of argon at least two times, sequentially inserting them into the atomizer. Depending on the type of spectrophotometer select the optimal volume of the solution from 0.005 to 0.050 cm3 or the optimal time of an aerosol spray from 5 to 50 C. wash the system with water, check the zero point and the stability of the calibration curve. To check the zero point solution is used, the appropriate control experience, prepared as described in section 4.3.
Selection of optimal temperature is carried out individually for the used spectrophotometer on solutions for calibration.
Recommended operating conditions of the atomizer shown in table 1.
Table 1 — operating conditions of the atomizer
The name of the stage | Temperature, °C | Time |
Drying | 120 — 150 | 2 — 30 |
Ashing | 300 — 500 | 15 — 20 |
Atomization | 2100 — 2300 | 4 — 8 |
The values of absorption solutions for the calibration and corresponding masses of tellurium to build the calibration graphs.
The value of absorbance of sample solution find the mass of tellurium on the appropriate calibration schedule.
4.5 Processing the analysis results
Mass fraction of tellurium in the sample of X %, is calculated by the formula
(1)
where Mx is the mass of tellurium in the sample solution, g;
M — the weight of the portion of the sample,
4.6 accuracy Control analysis
Control of metrological characteristics of the results of the analysis carried out according to GOST 13047.1.
Standards monitoring and error analysis method are given in table 2.
Table 2 — Standards for monitoring and error analysis method
Percentage
Mass fraction of tellurium | The permissible discrepancy between two parallel definitions d2 |
Permissible discrepancies in the results of three parallel measurements d3 | The allowable discrepancy of the two results of analysis D | The error analysis method D |
0,000020 | 0,000010 | 0,000012 | 0,000020 | 0,000014 |
0,00005 | 0,00002 | 0,00003 | 0,00004 | 0,00003 |
0,00010 | 0,00003 | 0,00004 | Of 0.00006 | 0,00004 |
0,00030 | 0,00005 | Of 0.00006 | 0,00010 | 0,00007 |
0,00050 | 0,00007 | 0,00008 | 0,00014 | 0,00010 |
0,00100 | 0,00012 | 0,00014 | 0,00024 | 0,00017 |