GOST 28033-89
GOST 28033−89 Steel. Method x-ray fluorescence analysis
GOST 28033−89
Group B39
STATE STANDARD OF THE USSR
STEEL
Method x-ray fluorescence analysis
Steel. Method of X-ray fluorescent analysis
AXTU 0809
Valid from 01.01.1999
until 01.01.2000*
______________________________
* Expiration removed
Protocol N 7−95 Interstate Council
for standardization, Metrology and certification
(IUS N 11, 1995). — Note the CODE.
INFORMATION DATA
1. DEVELOPED AND INTRODUCED by the Ministry of ferrous metallurgy of the USSR
PERFORMERS
V. I. Matorin, V. T. Ababkov, V. P., Zamaraev, V. D. Khromov, G. E. Sharonov, N. In. Armagnac, L. M. Fedorov, E. E. Makarov, 3.And.Cherkasova, V. I. Ustinov, And L. N. Pliner, T. I. Ignatenko
2. APPROVED AND put INTO EFFECT by Decision of the USSR State Committee for standards from
3. The period of examination — 1995 the Frequency of inspection — 5 years
4. INTRODUCED FOR THE FIRST TIME
5. REFERENCE NORMATIVE AND TECHNICAL DOCUMENTS
The designation of the reference document, to which this links |
Item number |
GOST 8.315−78 |
2.1 |
GOST 2424−83 |
1.1 |
GOST 6456−82 |
1.1 |
GOST 7565−81 |
2.1 |
GOST 18300−87 |
1.1 |
GOST 21963−82 |
1.1 |
_______________
* On the territory of the Russian Federation GOST 21963−2002, here and hereafter. — Note the CODE.
This standard specifies x-ray fluorescence method for the determination of elements in steels, given in table.1.
Table 1
The designated element |
Mass fraction, % | |
Sulfur |
From 0.002 to 0.20 | |
Phosphorus |
«0,002» 0,20 | |
Silicon |
«0,05» 5,0 | |
Manganese |
«0,05» 20,0 | |
Chrome |
«0,05» 35,0 | |
Nickel |
«0,05» 45,0 | |
Cobalt |
«0,05» 20,0 | |
Copper |
«0,01» 5,0 | |
Molybdenum |
«0,05» 10,0 | |
Tungsten |
«0,05» 20,0 | |
Vanadium |
«0,01» 5,0 | |
Titan |
«0,01» 5,0 | |
Niobium |
«To 0.01» to 2.0 |
Method is based on the intensity of the characteristic fluorescence lines of the element from its mass fraction in the sample. Excited by the primary x-ray characteristic radiation of elements in the sample is decomposed into a spectrum with subsequent measurement of analytical signal and determining the mass fraction of elements using the calibration parameters.
1. EQUIPMENT AND MATERIALS
Scanning and multichannel spectrometers.
Abrasive cutting-off machine of the type 8В240.
Grinding machine (Stripping, sanding) type 3Б634.
Surface grinding machine model 3Е711В.
Screw-cutting lathe model 16П16.
Cutting discs according to GOST 21963.
Elektrokorundovye grinding wheels with ceramic bunch of grit 50, hardness ST2 under GOST 2424.
Emery cloth sanding paper-based, type 2, grades GS-140 (L6), БШ200 (A7), SB-240 (P8) from the normal electrocorundum of grain size from 50 to 12 according to GOST 6456.
The technical rectified ethyl alcohol according to GOST 18300.
Argon-methane mixture for spectrometers using flow-proportional counters.
Allowed the use of other types of equipment and materials ensuring the accuracy of the analysis required by this standard.
2. PREPARATION FOR ASSAY
2.1. Sampling and sample preparation — according to GOST 7565.
2.2. The surface of the sample intended for irradiation, sharpen on the plane and, if necessary, wipe it with alcohol.
2.3. The sample must completely cover the hole of the receiver samples (tapes, camera). If the analyzed sample does not cover the hole, apply fitting in the form of a metal diaphragm limiting surface exposure.
2.4. Preparation of spectrometer measurements carried out as described in maintenance and operation. The conditions of analysis and the spectral lines are given in the Appendix.
2.5. The calibrated x-ray spectrometer is carried out using standard samples (CO), certified in accordance with GOST 8.315, or homogeneous samples analyzed by standardized or certified methods of analysis.
2.6. In the initial calibration, perform at least five series of measurements at different days of the x-ray spectrometer. In a series of for each carried out WITH two pairs of parallel (executed one after the other on the same surface without removing the sample from the radiation) measurements. The order of pairs of parallel measurements for all series randomizer.
Calculate the arithmetic mean value of analytical signals for the five series of measurements for each.
Calibration characteristics expressed in the form of the equations of communication, graph or table.
The calibration characteristics are set taking into account the influence of the chemical composition and physico-chemical properties and analyze samples.
For installations interfaced with a computer, the procedure of calibration is determined by the software of the spectrometer. The accuracy of the results of the analysis shall meet the requirements of this standard.
2.7. When re-calibration allowed reducing the number of lots to two.
2.8. In the case of operational calibration (obtaining the calibration characteristics, with each batch of samples analysed) spend at least two parallel measurements for each.
3. ANALYSIS AND PROCESSING OF RESULTS
3.1. Carry out two parallel measurements of the values of the analytical signal for each monitored item of the sample in the conditions adopted in the calibration.
3.2. If the differences of the values of the analytical signal expressed in units of mass fraction, not more (table.2) calculate the arithmetic mean.
Table 2
The designated element |
Mass fraction, % |
The limit of possible values of error of the analysis result , % |
The permissible divergence of two parallel measurements , % |
The permissible discrepancy between the results of the primary |
The permissible discrepancy between the results of spectral |
Sulfur |
From 0.002 to 0.005 |
0,002 |
0,002 |
0,003 |
0,003 |
SV. 0,005 «0,01 |
0,003 |
0,003 |
0,004 |
0,004 | |
«0,01» 0,02 |
0,004 |
0,004 |
0,005 |
0,005 | |
«0,02» 0,05 |
0,006 |
0,005 |
0,008 |
0,007 | |
«0,05» 0,10 |
0,010 |
0,008 |
0,013 |
0,010 | |
«To 0.10» to 0.20 |
0,016 |
0,013 |
0,020 |
0,016 | |
Phosphorus |
From 0.002 to 0.005 |
0,002 |
0,002 |
0,003 |
0,003 |
SV. 0,005 «0,01 |
0,003 |
0,003 |
0,004 |
0,004 | |
«0,01» 0,02 |
0,004 |
0,004 |
0,005 |
0,005 | |
«0,02» 0,05 |
0,006 |
0,005 |
0,008 |
0,007 | |
«0,05» 0,10 |
0,008 |
0,007 |
0,010 |
0,009 | |
«To 0.10» to 0.20 |
0,013 |
0,011 |
0,016 |
0,013 | |
Silicon |
From 0.05 to 0.10 |
0,016 |
0,013 |
0,020 |
0,016 |
SV. Of 0.10 «to 0.20 |
0,020 |
0,017 |
0,025 |
0,022 | |
«0,20» 0,5 |
0,03 |
0,03 |
0,04 |
0,03 | |
«0,5» 1,0 |
0,05 |
0,04 |
0,06 |
0,05 | |
«1,0» 2,0 |
0,08 |
0,07 |
0,10 |
0,08 | |
«To 2.0» 5,0 |
0,13 |
0,10 |
0,16 |
0,13 | |
Manganese |
From 0.05 to 0.10 |
0,008 |
0,007 |
0,010 |
0,010 |
SV. Of 0.10 «to 0.20 |
0,013 |
0,011 |
0,016 |
0,016 | |
«0,20» 0,5 |
0,020 |
0,017 |
0,025 |
0,024 | |
«0,5» 1,0 |
0,04 |
0,03 |
0,05 |
0,04 | |
«1,0» 2,0 |
0,06 |
0,05 |
0,07 |
0,06 | |
«To 2.0» 5,0 |
0,08 |
0,07 |
0,10 |
0,09 | |
«5,0» 10,0 |
0,16 |
0,10 |
0,20 |
0,16 | |
«10,0» 20,0 |
0,24 |
0,17 |
0,30 |
0,25 | |
Chrome |
From 0.05 to 0.10 |
0,010 |
0,008 |
0,013 |
0,011 |
SV. Of 0.10 «to 0.20 |
0,020 |
0,017 |
0,025 |
0,020 | |
«0,20» 0,5 |
0,03 |
0,025 |
0,04 |
0,03 | |
«0,5» 1,0 |
0,04 |
0,03 |
0,05 |
0,04 | |
«1,0» 2,0 |
0,05 |
0,04 |
0,06 |
0,05 | |
«To 2.0» 5,0 |
0,08 |
0,07 |
0,10 |
0,09 | |
«5,0» 10,0 |
0,20 |
0,11 |
0,25 |
0,19 | |
«10,0» 20,0 |
0,35 |
0,17 |
0,45 |
0,34 | |
«20,0» 35,0 |
0,45 |
0,25 |
0,55 |
0,45 | |
Nickel |
From 0.05 to 0.10 |
0,016 |
0,013 |
0,020 |
0,016 |
SV. Of 0.10 «to 0.20 |
0,024 |
0,017 |
0,03 |
0,024 | |
«0,20» 0,5 |
0,04 |
0,03 |
0,05 |
0,04 | |
«0,5» 1,0 |
0,06 |
0,04 |
0,08 |
0,06 | |
«1,0» 2,0 |
0,08 |
0,05 |
0,10 |
0,08 | |
«To 2.0» 5,0 |
0,10 |
0,07 |
0,13 |
0,11 | |
«5,0» 10,0 |
0,20 |
0,11 |
0,25 |
0,20 | |
«10,0» 20,0 |
0,35 |
0,17 |
0,45 |
0,33 | |
«20,0» 45,0 |
0,45 |
0,25 |
0,55 |
0,43 | |
Cobalt |
From 0.05 to 0.10 |
0,013 |
0,11 |
0,016 |
0,014 |
SV. Of 0.10 «to 0.20 |
0,020 |
0,017 |
0,025 |
0,023 | |
«0,20» 0,5 |
0,03 |
0,025 |
0,014 |
0,04 | |
«0,5» 1,0 |
0,04 |
0,03 |
0,05 |
0,05 | |
«1,0» 2,0 |
0,06 |
0,05 |
0,08 |
0,07 | |
«To 2.0» 5,0 |
0,10 |
0,08 |
0,13 |
0,12 | |
«5,0» 10,0 |
0,16 |
0,13 |
0,20 |
0,18 | |
«10,0» 20,0 |
0,24 |
0,17 |
0,30 |
0,3 | |
Copper |
From 0.01 to 0.02 |
0,007 |
0,006 |
0,009 |
0,007 |
SV. 0,02 «0,05 |
0,010 |
0,008 |
0,013 |
0,010 | |
«0,05» 0,10 |
0,016 |
0,013 |
0,020 |
0,016 | |
«To 0.10» to 0.20 |
0,024 |
0,017 |
0,03 |
0,03 | |
«0,20» 0,5 |
0,04 |
0,03 |
0,05 |
0,04 | |
«0,5» 1,0 |
0,06 |
0,04 |
0,08 |
0,07 | |
«1,0» 2,0 |
0,08 |
0,07 |
0,10 |
0,09 | |
«To 2.0» 5,0 |
0,10 |
0,08 |
0,13 |
0,12 | |
Molybdenum | From 0.05 to 0.10 |
0,020 |
0,017 |
0,025 |
0,019 |
SV. Of 0.10 «to 0.20 |
0,03 |
0,025 |
0,04 |
0,03 | |
«0,20» 0,5 |
0,04 |
0,03 |
0,05 |
0,04 | |
«0,5» 1,0 |
0,06 |
0,04 |
0,08 |
0,06 | |
«1,0» 2,0 |
0,08 |
0,06 |
0,10 |
0,08 | |
«To 2.0» 5,0 |
0,10 |
0,08 |
0,13 |
0,11 | |
«5,0» 10,0 |
0,16 |
0,16 |
0,20 |
0,17 | |
Tungsten |
From 0.05 to 0.10 |
0,013 |
0,011 |
0,016 |
0,017 |
SV. Of 0.10 «to 0.20 |
0,020 | 0,017 |
0,025 | 0,025 | |
«0,20» 0,5 |
0,04 |
0,03 |
0,05 |
0,05 | |
«0,5» 1,0 |
0,06 |
0,05 |
0,08 |
0,07 | |
«1,0» 2,0 |
0,10 |
0,08 |
0,13 |
0,11 | |
«To 2.0» 5,0 |
0,16 |
0,13 |
0,20 |
0,17 | |
«5,0» 10,0 |
0,28 |
0,17 |
0,35 |
0,28 | |
«10,0» 20,0 |
0,35 |
0,25 |
0,45 |
0,36 | |
Vanadium |
From 0.01 to 0.02 |
0,008 |
0,007 |
0,010 |
0,008 |
SV. 0,02 «0,05 |
0,010 |
0,008 | 0,013 | 0,010 | |
«0,05» 0,10 |
0,020 |
0,017 |
0,025 |
0,020 | |
«To 0.10» to 0.20 |
0,03 |
0,025 |
0,04 |
0,03 | |
«0,20» 0,5 |
0,04 |
0,03 |
0,05 |
0,04 | |
«0,5» 1,0 |
0,06 |
0,05 |
0,08 |
0,07 | |
«1,0» 2,0 |
0,10 |
0,08 |
0,13 |
0,10 | |
«To 2.0» 5,0 |
0,16 |
0,13 |
0,20 |
0,16 | |
Titan |
From 0.01 to 0.02 |
0,008 |
0,007 |
0,010 |
0,008 |
SV. 0,02 «0,05 |
0,010 |
0,008 |
0,013 |
0,010 | |
«0,05» 0,10 |
0,020 |
0,017 |
0,025 |
0,020 | |
«To 0.10» to 0.20 |
0,03 |
0,025 |
0,04 |
0,03 | |
«0,20» 0,5 |
0,04 |
0,03 |
0,05 |
0,04 | |
«0,5» 1,0 |
0,06 |
0,04 |
0,08 |
0,07 | |
«1,0» 2,0 |
0,08 |
0,06 |
0,10 |
0,09 | |
«To 2.0» 5,0 |
0,13 |
0,08 |
0,16 |
0,13 | |
Niobium |
From 0.01 to 0.02 |
0,007 |
0,006 |
0,009 |
0,007 |
SV. 0,02 «0,05 |
0,012 |
0,010 |
0,015 |
0,012 | |
«0,05» 0,10 |
0,020 |
0,017 |
0,025 |
0,020 | |
«To 0.10» to 0.20 |
0,03 |
0,025 |
0,04 |
0,03 | |
«0,20» 0,5 |
0,05 |
0,04 |
0,06 |
0,05 | |
«0,5» 1,0 |
0,08 |
0,06 |
0,10 |
0,08 | |
«1,0» 2,0 |
0,12 |
0,08 |
0,15 |
0,12 |
Allowed to Express the value of the analytical signal and the differences of parallel measurements in units of the scale readout-recording instrument x-ray spectrometer. Thus expressed in units of the scale readout-recording instrument using the calibration parameters.
In the case of exceeding the permissible differences of the parallel measurements analysis repeated.
3.3. Allowed to perform one measurement. In this case, monitoring of convergence is carried out two parallel measurements for one of the samples analyzed of the party. The differences of parallel measurements should not exceed . Allowed to control the convergence of the via WITH.
3.4. The final result of the analysis be the arithmetic mean of two parallel measurements or the result of one measurement that meet the requirements of PP.3.2, 3.3.
4. CONTROL OF ACCURACY OF ANALYSIS RESULTS
4.1. Stability control calibration characteristics
4.1.1. Stability control calibration parameters for the upper and lower limits of the measuring range is carried out at least once per shift using WITH or homogeneous samples.
You can control only the upper limit or mid-range.
For (samples) carry out two parallel measurements of the analytical signal. The values of the analytical signal expressed in units of mass fraction of the scale or readout-recording instrument x-ray spectrometer.
4.1.2. If the difference values of the analytical signal for parallel measurements is equal , calculate the arithmetic mean and the difference , where the value of the analytical signal for THE (sample) obtained by the method specified in claim 2.6, using the established calibration parameters.
If the difference exceeds the parallel dimensions , the measurement is repeated.
If during the second measurement the difference exceeds the permissible measuring stop to identify and resolve the causes of excess .
If exceeds the allowable value of 0.5 (tab.2) re-take measurements in accordance with clause
Values and expressed in units of mass fraction of the scale or readout-recording instrument x-ray spectrome
tra.
4.1.3. If duplicate measurements exceed the permissible value, carry out the recovery of the calibration characteristics. The order of recovery of calibration characteristics determined for each type of measurement means, taking into account its analytical and design capabilities.
4.1.4. The extraordinary stability control is carried out after repair, prevention of x-ray equipment or changes in testing conditions.
4.1.5. When operational, calibrated stability control is not carried out.
4.2. Control the reproducibility of the results of the analysis
4.2.1. Control the reproducibility of the x-ray fluorescence analysis performed to determine mass fraction of elements in the previously analyzed samples.
4.2.2. The number of re-definitions should be not less than 0.3% of the total number of definitions for a controlled period.
4.2.3. Repeatability is considered satisfactory if the number of discrepancies between the results of initial and repeat analysis exceeds the allowable value (table.2) is not more than 5% of the number of repeated definitions.
4.3. The control of correctness of analysis results
4.3.1. The checking is carried out by selective comparison of the results of x-ray fluorescence analysis of samples results of chemical or physico-chemical analysis performed by standardized or certified methods.
4.3.2. The number of results in the control of accuracy must be not less than 0.3% of the total number of definitions for a controlled period.
4.3.3. Measurement accuracy is considered satisfactory if the number of discrepancies between the results of x-ray fluorescence and chemical (or physico-chemical) tests exceeding the permissible value (see table.2) no more than 5%.*
________________
* The text matches the original. — Note the CODE.
4.3.4. Allowed to perform the checking by x-ray fluorescence analysis on the basis of reproduced values of the mass fraction of the element in the enterprise.
4.4. When the conditions of sec. 3 and 4, the error analysis result (at p = 0.95) must not exceed the limit given in table.2.
APPLICATION (recommended).
APP
Recommended
Table 3
THE CONDITIONS OF ANALYSIS FOR DIFFERENT TYPES OF X-RAY SPECTROMETERS
Type the x-ray- 's open SPECT- romera |
Tube type, an anode material | The working parameters of the x-ray- nevskoi tube |
Controlled element |
Expo sure, | |||||||||||||
S |
R |
Si |
Mn |
Cr |
Ni |
W |
Mo |
Ti |
V |
Cu |
Co |
Nb | |||||
voltage voltage, kV |
current, mA |
The crystal-analyzer | |||||||||||||||
ARL-72000 |
OEG-75; Rh |
50 |
40 |
EDDT |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
30 | |
SRM-18 |
BHV-9; 12; 13; Pd |
20−50 |
30−70 |
EDDT |
SiO |
SiO |
SiO |
SiO |
SiO |
SiO |
SiO |
SiO |
SiO |
SiO |
SiO |
20−40 | |
VPA 2; 20 |
FS 60/50 OCZW |
20−50 |
20−50 |
EDDT |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
LiF |
10−80 |
Table 4
SPECTRAL LINES
Item |
Wavelength, nm |
Line |
Sulfur |
0,536 |
|
Phosphorus |
0,614 |
|
Silicon |
0,713 |
|
Manganese |
0,210 |
|
Chrome |
0,229 |
|
Nickel |
0,166 |
|
Tungsten |
0,147 |
|
Molybdenum |
0,071 |
|
Titan |
0,275 |
|
Vanadium |
0,250 |
|
Copper |
0,154 |
|
Cobalt |
0,179 |
|
Niobium |
0,075 |
The text of the document is verified by:
the official publication of the
M.: Publishing house of standards, 1989