GOST R 55079-2012
GOST R 55079−2012 Steel. Method of atomic-emission analysis with inductively coupled plasma
GOST R 55079−2012
NATIONAL STANDARD OF THE RUSSIAN FEDERATION
STEEL
Method of atomic-emission analysis with inductively coupled plasma
Steel. Method of inductively coupled plasma atomic-emission analysis
OKS 77.140.30
AXTU 0709
Date of introduction 2014−01−01
Preface
The objectives and principles of standardization in the Russian Federation established by the Federal law of 27 December 2002 N 184-FZ «On technical regulation», and rules for the application of national standards of the Russian Federation — GOST R 1.0−2004"Standardization in the Russian Federation. The main provisions"
Data on standard
1 DEVELOPED by the Federal state unitary enterprise «Central research Institute of ferrous metallurgy them.And.P.Bardeen"
2 SUBMITTED by the Technical Committee for standardization TC 145 «monitoring Methods of steel products"
3 APPROVED AND put INTO EFFECT by the Federal Agency for technical regulation and Metrology dated 14 November 2012 N 777-St
4 INTRODUCED FOR THE FIRST TIME
Information about the changes to this standard is published in the annual reference index «National standards», and the text changes and amendments — in monthly information index «National standards». In case of revision (replacement) or cancellation of this standard a notification will be published in the monthly information index «National standards». Relevant information, notification and lyrics are also posted in the information system of General use — on the official website of the Federal Agency for technical regulation and Metrology on the Internet (www.gost.ru)
1 Scope
1.1 this standard specifies atomic emission with inductively coupled plasma spectrometric method for the determination of mass fractions of elements in carbon, alloy, high-alloy steels.
1.2 the Ranges of definition of mass fractions of elements in the steels are given in table 1.
Table 1
The designated element |
The range defined by mass fraction, % |
Silicon |
From 0.01 to 5.0 |
Manganese |
From 0.01 to 5.0 |
Chrome |
From 0.01 to 30 |
Nickel |
From 0.01 to 30 |
Cobalt |
From 0.01 to 5.0 |
Copper |
From 0.01 to 5.0 |
Aluminium |
From 0.01 to 5.0 |
Tungsten |
From 0.01 to 5.0 |
Molybdenum |
From 0.005 to 5.0 |
Vanadium |
From 0.005 to 2.0 |
Titan |
From 0.005 to 5.0 |
Cubic Zirconia |
From 0.01 to 0.50 |
The standard is applicable for determining the mass fraction of elements in the analyzed solutions like using and without using internal standard.
2 Normative references
This standard uses the regulatory references to the following standards:
GOST R ISO 5725−1-2002 Accuracy (trueness and precision) of methods and measurement results. Part 1. General provisions and definitions
GOST R ISO 5725−2-2002 Accuracy (trueness and precision) of methods and measurement results. Part 2. The basic method for the determination of repeatability and reproducibility of a standard measurement method
GOST R ISO 5725−3-2002 Accuracy (trueness and precision) of methods and measurement results. Part 3. Intermediate indicators the precision of a standard measurement method
GOST R ISO 5725−4-2002 Accuracy (trueness and precision) of methods and measurement results. Part 4. The main methods of determining the correctness of a standard measurement method
GOST R 53228−2008 Scales non-automatic actions. Part 1. Metrological and technical requirements. Test
GOST R 54569−2011 Iron, steel, ferroalloys, chromium and manganese metal. Standards of accuracy of quantitative chemical analysis
GOST 83−79 Reagents. Sodium carbonate. Specifications
GOST 123−98 Cobalt. Specifications
GOST 849−2008 Nickel primary. Specifications
GOST 859−2014 Copper. Brand
GOST 1770−74 (ISO 1042−83, ISO 4788−80) Glassware volumetric laboratory glass. Cylinders, beakers, flasks, test tubes. General specifications
GOST 3118−77 Reagents. Hydrochloric acid. Specifications
GOST 4199−76 Reagents. Sodium tetraborate 10-aqueous. Specifications
GOST 4204−77 Reagents. Sulphuric acid. Specifications
GOST 4328−77 Reagents. Sodium hydroxide. Specifications
GOST 4461−77 Reagents. Nitric acid. Specifications
GOST 5905−2004 (ISO 10387:1994) metal Chrome. Specifications
GOST 6008−90 metallic Manganese and nitrated manganese. Specifications
GOST 6552−80 Reagents. Orthophosphoric acid. Specifications
GOST 6563−75 technical articles made of noble metals and alloys. Specifications
GOST 6709−72 distilled Water. Specifications
GOST 9428−73 Reagents. Silicon (a) oxide. Specifications
GOST 10157−79 Argon gaseous and liquid. Specifications
GOST 10484−78 Reagents. Hydrofluoric acid. Specifications
GOST 11069−2001 primary Aluminium. Brand
GOST 12349−83 Steel alloyed and high alloy. Methods for determination of tungsten
GOST 13610−79 carbonyl Iron radio. Specifications
GOST 17746−96 spongy Titanium. Specifications
GOST 18289−78 Reagents. Sodium volframovich 2 water. Specifications
GOST 19908−90 Crucibles, bowls, beakers, flasks, funnels, test tubes and caps made of transparent glass. General specifications
GOST 25336−82 Glassware and equipment laboratory glass. The types, basic parameters and dimensions
GOST 28473−90 Iron, steel, ferroalloys, chromium and manganese metal. General requirements for methods of analysis
GOST 29227−91 (ISO 835−1-81) oils. Pipettes are graduated. Part 1. General requirements
Note — When using this standard appropriate to test the effect of reference standards in the information system of General use — on the official website of the Federal Agency for technical regulation and Metrology on the Internet or in the annual information index «National standards» published as on January 1 of the current year, and the editions of the monthly information index «National standards» for the current year. If the reference standard is replaced (changed), when using this standard should be guided by replacing (amended) standard. If the reference standard is cancelled without replacement, then the situation in which the given link applies to the extent that does not affect this link.
3 Terms and definitions
This standard applies the terminology according to GOST R ISO 5725−1 — GOST R ISO 5725−4, methodical instructions [1], recommendations on interstate standardization [2]-[4], as well as the following terms with respective definitions:
3.1 the intensity of spectral lines: the Power emitted by a unit volume of the substance in the range of wavelengths corresponding to the full width of the spectral lines.
3.2 analytic signal: the Signal contains quantitative information about the size, functionally associated with the content item, and recorded in the analysis.
3.3 calibration characteristics: Functional dependence of analytical signal from the content of the element expressed as a formula, graph or table.
3.4 standard control: a Numeric value that is a criterion for the recognition of the monitored indicator of the quality of the measurement results relevant (or not relevant) requirements.
4 General requirements
General requirements for methods of analysis GOST 28473.
5 Apparatus and reagents
Spectrometric system consisting of a spectrometer (multi-channel or sequential scanning), a driving source, a high-frequency generator, the measuring electronic system and computer. If the spectrometer is of the series type measurement device for simultaneously measuring lines the internal standard, it is possible to use a method using internal standard.
Argon according to GOST 10157.
Glassware: cylinders, beakers, flasks according to GOST 1770.
Glass graduated pipettes according to GOST 29227.
The platinum crucible according to GOST 6563.
Beakers, flasks, funnels made of transparent quartz glass according to GOST 19908.
Glasses glass with a capacity of 100, 150, 250 cmaccording to GOST 25336.
Scales according to GOST R 53228.
Distilled water according to GOST 6709.
Hydrochloric acid () according to GOST 3118, a solution of 1:1; 1:9.
Acid (nitric) according to GOST 4461, solution 1:1.
Sulfuric acid () according to GOST 4204, solution 1:1; 1:15; 1:5.
Orthophosphoric acid () according to GOST 6552.
A mixture of acids .
Hydrofluoric acid (HF) according to GOST 10484.
Sodium hydroxide according to GOST 4328.
Carbonyl iron according to GOST 13610.
Silicon (a) oxide according to GOST 9428.
Primary aluminium GOST 11069.
Manganese metal according to GOST 6008.
Metal Nickel GOST 849.
Chrome metal according to GOST 5905.
Titanium sponge according to GOST 17746.
Vanadium and molybdenum metal according to technical documentation approved in the established order.
Copper metal according to GOST 859.
Zirconia () chloride oxide 8-water according to technical documentation approved in the established order.
Cobalt metal according to GOST 123.
Sodium volframovich 2-water () according to GOST 18289.
The anhydrous sodium carbonate according to GOST 83.
Sodium tetraborate desyatiletnij () according to GOST 4199.
Yttrium oxide according to technical documentation approved in the established order.
All reagents must have the qualification of H. h or h.d. a.
6 Preparation and analysis
6.1 Preparation of the calibration solutions
6.1.1 the basic Preparation of the calibration solutions containing 1 mg/cmof the designated elements (solutions a)
In all the following cases, except especially noted, the dissolution is carried out in the chemical glasses with a capacity of 200−250 cmwhen heated. Glasses must be covered with watch glass. In a volumetric flask the solutions are transferred only after cooling. Sample substances for the preparation of standard solutions of the identified elements are weighed to the nearest 0.1 mg.
6.1.1.1 Solution of vanadium
1 g of metallic vanadium dissolved in 40 cmdiluted 1:1 , transferred into a volumetric flask with a capacity of 1 DM, adjusted to the mark with distilled water, mix.
6.1.1.2 Solution of molybdenum
1 g of the powder of molybdenum metal are dissolved in 100 cmof the mixture . The mixture is carefully poured in small portions. The solution was transferred to volumetric flask with a capacity of 1 DM, add 50 cmof concentrated , adjusted to the mark with distilled water and mix.
6.1.1.3 Solution of tungsten
1,7942 volframovich g of sodium is dissolved in a volumetric flask with a capacity of 1 DMin a small volume of water, bring to the mark with water and mix. The solution contains 1 mg/cmtungsten. The titer of the obtained solution set by gravimetric method churchyard 12349.
6.1.1.4 Solution of titanium
1 g of titanium metal is dissolved in 100 cmdiluted 1:5 . After dissolution, add dropwise concentrated to a bleaching solution and evaporated until the appearance of dense white fumes. Add water and repeat evaporation twice. The solution was transferred to volumetric flask with a capacity of 1 DMand bring to mark a five percent solution .
6.1.1.5 Solution of zirconium
3,5322 g dissolved in 100 cmdiluted 1:1 HCl, by heating and stirring, poured the solution with water to a volume of 1 DM. The solution contains 1 g/lof zirconium ().
6.1.1.6 Solution of silicon
0,5348 g svejeprigotovlennogo at 1000°C-1100°C of silicon oxide is fused in a platinum crucible with 2.5 grams (anhydrous) at 1100 °C for 5 min. the Melt is leached in water at a moderate heat, add 2.5 g of NaOH and dilute with water to 250 cm. The solution is stored in polyethylene or Teflon containers.
6.1.1.7 the copper Solution
1 g of copper metal is dissolved in 50 cmdiluted 1:1 , the solution was transferred to volumetric flask with a capacity of 1 DM, adjusted to the mark with distilled water and mix.
6.1.1.8 Solution of aluminum
1 g of metallic aluminium is dissolved in 50 cmdiluted 1:1 НCl, plunging into the beaker to dissolve the lid of a platinum crucible to accelerate the dissolution, transfer solution to volumetric flask with a capacity of 1 DM, adjusted to the mark with distilled water and mix.
6.1.1.9 Solution of cobalt
1 g of metallic cobalt is dissolved in 50 cmdiluted 1:1 , and the solution transferred to a volumetric flask with a capacity of 1 DM, added to 75 cmof concentrated , adjusted to the mark with distilled water and mix.
6.1.1.10 Solution chromium
1 g of metallic chromium is dissolved in 50 cmdiluted 1:1 НCl, transferred to a volumetric flask with a capacity of 1 DM, adjusted to the mark with distilled water and mix.
6.1.1.11 Solution of Nickel
1 g of metallic Nickel dissolved in 50 cmdiluted 1:1 , and the solution transferred to a volumetric flask with a capacity of 1 DM, added to 75 cmof concentrated , adjusted to the mark with water and mix.
6.1.1.12 Solution of manganese
1 g of metallic manganese are dissolved in 20 cmdiluted 1:1 , and the solution transferred to a volumetric flask with a capacity of 1 DM, added to 75 cmof concentrated , adjusted to the mark with water and mix.
6.1.1.13 Solution of iron
1 g of metallic iron are dissolved in 20 cmdiluted 1:1 НCl with the addition of 2−3 cmof concentrated , transferred into a volumetric flask with a capacity of 1 DM, adjusted to the mark with distilled water and mix.
6.1.1.14 Solution of yttrium (internal standard)
Weighed 1,270 grams of yttrium oxide of a purity of more than 99.98% of transferred into a beaker with capacity of 500 cmand dissolved in 50 cmof hydrochloric acid. The solution is quantitatively transferred into a measuring flask with volume capacity of 1000 cm, adjusted to the mark with water and mix.
Notes
1 may be used as the primary standard solutions solutions of GSO composition of the aqueous solutions of cations.
2 Solutions with a lower concentration is obtained by dilution corresponding aliquotes of the main solution in a volumetric flask.
6.1.2 Preparation of the calibration solutions containing 10 µg/cmof the designated elements (solutions B)
Solutions B is prepared by diluting the basic solutions And of the calibration 100 times. To do this in a flask with a capacity of 100 cmplaced 1 cmof solution A and bring to the mark with hydrochloric acid 1:9.
6.2 Preparation analysis
The unit measurement is carried out in accordance with the manufacturer’s recommendations and instructions for the operation and maintenance of the device. For a specific type of device optimal parameters of the spectrometer and the flow rate of argon is set experimentally within the range for maximum sensitivity and stability determine the mass fraction of elements. The device must ensure that the metrological characteristics in accordance with the requirements given in table A. 1 (Appendix A). Recommended analytical lines of the determined elements are given in table B. 1 (Appendix B).
6.3 Setting calibration parameters
Setting calibration parameters is carried out in accordance with the procedure regulated by the mathematical software of the spectrometer.
Calibration characteristics set by a series of 5−6 of the calibration solutions, the concentration of which covers the interval of the measured mass fraction of elements. To do this in flask with a capacity of 100 or 200 cmenter the necessary amounts of basic solutions defined by the elements (6.1) and adjusted to the mark with hydrochloric acid (1:9) (table V. 1, Annex B).
When using the internal standard to each flask introduce 1 cmof a solution of yttrium concentration of 1 mg/cm.
The mass fraction of detectable elements corresponding to their content in the steel, for the lower and upper points of the calibration characteristics are shown in table 2.
Table 2
The upper point of the calibration curve |
The lower point of the calibration curve | ||||
The designated element |
The contents of the element in the sample, wt. % |
The volume of the solution And cm |
The designated element |
The contents of the element in the sample, wt. % |
The volume of solution B, cm |
Zr |
0,5 |
0,5 |
Mo, V, Ti |
0,005 |
0,5 |
V |
2,0 |
2,0 |
|||
Si, Mn, Cr, Ni, Co, Cu, Al, W, Mo, Ti |
5,0 |
5,0 |
Si, Mn, Cr, Ni, Co, Cu, Al, W, Zr |
0,01 |
1,0 |
Ni*, Cr* |
30 |
30 |
|||
* Content of Nickel and chromium in steels of more than 5% by weight. |
For each solution perform at least three measurements of intensity of analytical lines of the designated element at the selected wavelength. The average intensity values used for calculating calibration parameters in accordance with the mathematical software tool.
Note — If the linearity of the calibration characteristics is confirmed, then in practice you can only use two solutions, corresponding upper and lower borders of the defined ranges (table 2).
Simultaneously with the establishment of calibration parameters conduct a quantitative consideration of the mutual spectral effects on the chosen analytical lines of the determined elements. Correction factors, taking into account the spectral overlap, enter into computer memory and used when calculating the result of the analysis.
If the device software does not calculate the correction coefficients of the spectral overlap, the calculation is carried out independently and amend the final result of the analysis.
Note — In Annex G for reference purposes, table G. 1, which shows examples of correction factors that take into account spectral overlapping.
6.4 Preparation of solutions of the sample and GSO
6.4.1 Preparation of solution of samples of steels with a content of detectable elements is less than 5 wt.%, tungsten less than 1% wt. and titanium less than 0.5% by weight.
A portion of the sample mass 0,1000 g placed in a glass beaker with a capacity of 150−200 cm, flow 20 cmof HCl solution 1:1, cover with a watch glass and heated to dissolve sample. Carefully pour the 1 cmand the resulting solution is evaporated to a volume of 10 cm. The solution was cooled, washed the walls of the beaker and watch glass with distilled water. The resulting solution was quantitatively transferred to a volumetric flask with a capacity of 100 cm, adjusted to the mark with distilled water and mix.
If upon dissolution of the sample remains insoluble precipitate, the sample solution was filtered in a volumetric flask with a capacity of 200 cmusing the filter «white ribbon», washed the precipitate on the filter first in small portions a hot solution of HCl of 2:100 to the disappearance of the yellow colour of the filter and then hot water. Place the filter in a platinum crucible. Dried, incinerated at a temperature of ~800°C. the resulting residue is fused at 1000 °C With 1−1. 5 g of a mixture of 2:1. The smelt is leached with moderate heating with a solution of HCl 1:9. The resulting solution was attached to the main filtrate, adjusted to the mark with distilled water, mix.
6.4.2 Preparation of solution of samples of steels with the content of the determined elements more than 5 wt.%, tungsten less than or equal to 5 mass%. and titanium less than or equal to 5 mass%.
A portion of the sample mass 0,1000 g placed in a glass beaker with a capacity of 150−200 cm, flow 20 cmof a mixture of acids , cover with a watch glass and heated to dissolve sample. The resulting solution was cooled, transferred to a volumetric flask with a capacity of 200 cm, adjusted to the mark with distilled water.
Notes
1 If, after the dissolution of the sample remains insoluble precipitate, proceed
2 When the method of analysis with an internal standard to the sample solution add 1 cmof a solution of yttrium.
6.4.3 preparation of the solution of the state standard samples (GSO)
Dissolution sample of the bonds that are similar in chemical composition to the sample is carried out in accordance with 6.4.1
6.5 preparation of the solution in the reference experiment
In parallel with the dissolution of the sample and GSO, performing all the operations of dissolution and using the same quantities of reagents, a solution of the reference experiment («blank solution») to account for contamination of the reagent-defined elements. However, instead of mounting the sample, take the calculated amount of iron carbonyl.
6.6 Preparation recalibrating solutions
Solutions for stability control calibration parameters (multi-element regulirovanie solutions) — solution No. 1 (solution for stability control at the highest point of calibration curve) and solution 2 N (for control stability at the lower point of the calibration curve) is prepared with each batch of samples analysed.
The composition of the multielement recalibrating solutions can be restricted to only those elements, which carry out specific analysis.
Optionally, if it is required by the software of the spectrometer, a solution of N 2 can be the mortar used in the reference experiment.
Notes
1 in the preparation of multi-element solutions should take into account possible inter-element spectral overlay. In this case, it is necessary to prepare several solutions of N 1 (e.g. N 1A, N 1B, etc.) to control the stability at the top that contains the elements that do not have spectral overlaps.
2 When the method of analysis with an internal standard to recalibration solutions add 1 cmof a solution of yttrium.
6.6.1 Preparation recalibrating solutions in the analysis of steels with the content of the determined elements less than or equal to 5 wt.%, tungsten less than 1% wt. and titanium less than 0.5% by weight.
The operations described in 6.4.1, is carried out for two batches of carbonyl iron to 0.09 g depending on the method of dissolving the steel samples obtained solutions of iron carbonyl is transferred to a flask with a capacity of 100 or 200 cm. When cooking recalibrating solutions for the lower (solution No. 1) and the upper (solution No. 2) points of the calibration characteristics in each of two flasks make the appropriate volumes of standard solutions of the identified elements, as shown in table 2.
6.6.2 Preparation recalibrating solutions in the analysis of steels with the content of the determined elements more than 5 wt.%, tungsten less than or equal to 5 mass%. and titanium less than or equal to 5 mass%.
The operations described in 6.4.2, are carried out for two batches of carbonyl iron to 0.05 g. the Obtained solutions of iron carbonyl is transferred to a flask with a capacity of 200 cm. To obtain recalibrating solutions for the lower (solution No. 1) and the upper (solution No. 2) points of the calibration characteristics in each of two flasks make the appropriate volumes of standard solutions of the identified elements, as shown in table 2, given that the content of chromium and Nickel in recalibrating the solution of N 2 should correspond to their content in the sample steel.
6.7 measurement of the contents of the determined elements in the sample
6.7.1 stability Control calibration parameters
Stability control calibration parameters is carried out before carrying out the analysis under the procedure provided software maintenance tool and repeat (if necessary) every 30−40 min during the analysis. For control stability at low point calibration curve using a solution of N 2, and for stability control in the top — solution N 1.
If the difference between the obtained result and the contents of the determined elements in calibration solutions exceeds the allowable value (table A. 1, Annex A), the measurement is repeated. If upon repeated measurements of the divergence exceeds the allowable value, carry out the adjustment of the calibration dependence.
Note — depending on the software of the spectrometer for control stability at the bottom can be used a solution of a «single experience».
6.7.2 Analysis of the sample solution
Solutions of samples analysed successively introduced into the excitation source and measure the intensity of the analytical lines of the determined elements. In accordance with the program controlling the spectrometer, for each solution performed in three parallel measurements of the intensity and calculate the average value. Using the calibration according to find the contents of the designated element in the sample solution.
After each measurement, the spray system was washed with HCl solution 1:9.
7 Processing of results
The result of the analysis taking the arithmetic mean of two parallel definitions, each of which is made a separate charge, in that case, if the difference between the results does not exceed the repeatability limit rgiven in table A. 1 (Appendix A).
At default of this condition, a second analysis. If and when you re analysis of this requirement is not met, the results of the analysis to recognize the unfaithful, the analysis is stopped until the identification and elimination of the causes of the disruption of the analysis.
The numerical value of the result of the analysis must end with the same number of discharges, and the corresponding value of the characteristics of the error of the results of the analysis are given in table A. 1 (Appendix A).
8 Control of accuracy of analysis results
8.1 the Control of reproduction (convergence)
The control of reproduction is carried out in accordance with section 7.
In the control of reproduction (convergence) the absolute value of the difference of the two results of the parallel determinations should not exceed the limit of repeatability (convergence) r, i.e. must satisfy the condition (with a probability ):
.
The value of r given in table A. 1 (Appendix A).
When you re discrepancy of obtained results with the standard analysis stop, find out the reasons of unsatisfactory results, and eliminate them.
8.2 Control intermediate precision variable factors: operator and time
When control of the intermediate (inter-laboratory) precision of the absolute value of the difference of the two results of the analysis of the same sample obtained by different operators at different times should not exceed the limit of the intermediate (inter-laboratory) precision , i.e. with a probability should satisfy the condition:
.
The value of the limit given in table A. 1 (Appendix A).
If the specified ratio is not met, the experiment is repeated. When you re discrepancy of obtained results with the standard analysis stop, find out the reasons of unsatisfactory results, and eliminate them.
8.3 Control of reproducibility
The results obtained in two laboratories to recognize acceptable if the absolute difference between them does not exceed the limit of reproducibility R (table A. 1, Annex A).
8.4 verification of results of analysis
Control of the correctness of the results of the analysis carried out with standard samples by the method of additives or other methods stipulated by GOST 28473. As control samples can be used not to be used for calibration of standard samples of similar composition to the sample. Analysis of solutions of the control samples is carried out for two parallel batches at 6.7.
The absolute value of the discrepancies between the result of the analysis of the control (standard) sample X and the accepted reference (certified) value must not exceed the value :
.
The values of standard are given in table A. 1 (Appendix A).
If the specified ratio is not met, the experiment is repeated. When you re discrepancy of obtained results with the standard analysis stop, find out the reasons of unsatisfactory results, and eliminate them.
9 test report
The results of the measurements draw up a Protocol, a journal entry or record in electronic media.
The test report shall contain:
— information about the laboratory, the date of the test;
— information on test material;
— information about the sampling;
— information about identification of the sample;
— a reference to a method of measurement;
— test results.
Together with the measurement result From may be the characteristic errors (table A. 1, Annex A) or the expanded uncertainty Uof the measurements:
or .
Note — the Expanded uncertainty of measurement U is the parameter associated with the result of a measurement and characterizes the dispersion of values which can be attributed to the measurand. The expanded uncertainty is calculated by the following formula
, (1)
where k is a coverage factor equal to 2;
u — standard uncertainty of the measurements equal .
Annex a (mandatory). Values and limits of repeatability, intermediate precision, reproducibility, and standards of correctness (% wt.) at confidence probability P=0,95
Appendix A
(required)
— standard deviation of repeatability (convergence);
— standard deviation intermediate precision (variable factors: operator and time);
— standard deviation of reproducibility;
— the limit of absolute error of the analysis ();
— the limit of repeatability (convergence) measurements for the two (three) of parallel definitions ();
— the limit of intermediate precision (variable factors: operator and time) ();
R — reproducibility limit ();
— the norm of control of correctness of analysis results and stability of calibration characteristics ().
Table A. 1
In mass percent | |||||||||
Oprah- sharing- ed electric COP |
Range determination trolled con- traffickers |
R |
R |
||||||
Si |
0,01−0,02 |
0,011 |
0,0013 |
0.0016 inch |
0,003 |
0,003 |
0,004 |
0,005 |
0,0023 |
0,02−0,05 |
0,0018 |
0,0021 |
0,0025 |
0,005 |
0,005 |
0,006 |
0,007 |
0,004 | |
Of 0.05−0.10 |
0,0030 |
0,0036 |
0,0043 |
0,008 |
0,008 |
0,010 |
0,012 |
0,006 | |
0,10−0,20 |
0,0050 |
0,0060 |
0,0071 |
0,014 |
0,014 |
0,016 |
0,020 |
0,010 | |
0,20−0,50 |
0,0077 |
0,0092 |
0,011 |
0,022 |
0,022 |
0,026 |
0,03 |
0,016 | |
0,50−1,0 |
0,011 |
0,013 |
0,016 |
0,03 |
0,03 |
0,04 |
0,05 |
0,023 | |
1,0−2,0 |
0,015 |
0,018 |
0,022 |
0,04 |
0,04 |
0,05 |
0,06 |
0,03 | |
2,0−5,0 |
0,025 |
0,029 |
0,035 |
0,07 |
0,07 |
0,08 |
0,10 |
0,05 | |
Mn |
0,01−0,02 |
0,0008 |
0,0010 |
0,0012 |
0,0024 |
0,0024 |
0,0028 |
0,003 |
0,0017 |
0,02−0,05 |
0,0014 |
0,0017 |
0,002 |
0,004 |
0,004 |
0,005 |
0,006 |
0,0029 | |
0,10−0,20 |
0,0025 |
0,0030 |
0,0036 |
0,007 |
0,007 |
0,009 |
0,010 |
0,005 | |
0,20−0,50 |
0,0043 |
0,0051 |
0,0061 |
0,012 |
0,012 |
0,014 |
0,017 |
0,009 | |
0,50−1,0 |
0,0067 |
0,0080 |
0,0095 |
0,019 |
0,019 |
0,022 |
0,027 |
0,014 | |
1,0−2,0 |
0,0091 |
0,011 |
0,013 |
0,025 |
0,025 |
0,03 |
0,04 |
0,019 | |
2,00−5,00 |
0,013 |
0,016 |
0,019 |
0,04 |
0,04 |
0,05 |
0,05 |
0,027 | |
Ni |
0,010−0,020 |
0,0011 |
0,0013 |
0,0015 |
0,0029 |
0,0029 |
0,004 |
0,004 |
0,0022 |
0,020−0,05 |
0,0018 |
0,0021 |
0,0025 |
0,005 |
0,005 |
0,006 |
0,007 |
0,004 | |
Of 0.05−0.10 |
0,0027 |
0,0033 |
0,0039 |
0,008 |
0,008 |
0,009 |
0,011 |
0,006 | |
0,10−0,20 |
0,0046 |
0,0055 |
0,0065 |
0,013 |
0,013 |
0,015 |
0,018 |
0,009 | |
0,20−0,50 |
0,0070 |
0,0084 |
0,01 |
0,020 |
0,020 |
0,024 |
0,028 |
0,014 | |
0,50−1,0 |
0,011 |
0,013 |
0,015 |
0,029 |
0,029 |
0,04 |
0,04 |
0,022 | |
1,0−2,0 |
0,014 |
0,017 |
0,02 |
0,04 |
0,04 |
0,05 |
0,06 |
0,029 | |
2,0−5,0 |
0,023 |
0,028 |
0,033 |
0,07 |
0,07 |
0,08 |
0,09 |
0,05 | |
5,0−10,0 |
0,032 |
0,039 |
0,046 |
0,09 |
0,09 |
0,11 |
0,13 |
0,07 | |
10,0−30,0 |
0,046 |
0,055 |
0,065 |
0,13 |
0,13 |
0,15 |
0,18 |
0,09 | |
Cr |
0,01−0,02 |
0,0011 |
0,0013 |
0,0015 |
0,0029 |
0,0029 |
0,004 |
0,004 |
0,0022 |
0,02−0,05 |
0,0018 |
0,0021 |
0,0025 |
0,005 |
0,005 |
0,006 |
0,007 |
0,004 | |
Of 0.05−0.10 |
0,0025 |
0,0030 |
0,0036 |
0,007 |
0,007 |
0,009 |
0,010 |
0,005 | |
0,10−0,20 |
0,0039 |
0,0046 |
0,0055 |
0,011 |
0,011 |
0,013 |
0,015 |
0,008 | |
0,20−0,50 |
0,0062 |
0,0074 |
0,0088 |
0,017 |
0,017 |
0,021 |
0,025 |
0,013 | |
0,50−1,0 |
0,0084 |
0,0101 |
0,012 |
0,024 |
0,024 |
0,028 |
0,03 |
0,017 | |
1,0−2,0 |
0,013 |
0,015 |
0,018 |
0,04 |
0,04 |
0,04 |
0,05 |
0,026 | |
2,0−5,0 |
0,020 |
0,024 |
0,028 |
0,06 |
0,06 |
0,07 |
0,08 |
0,04 | |
5,0−10,0 |
0,027 |
0,033 |
0,039 |
0,08 |
0,08 |
0,09 |
0,11 |
0,06 | |
10,0−30,0 |
0,057 |
0,068 |
0,081 |
0,16 |
0,16 |
0,19 |
0,23 |
0,12 | |
W |
0,01−0,02 |
0,0015 |
0,0018 |
0,0022 |
0,004 |
0,004 |
0,005 |
0,006 |
0,0032 |
0,02−0,05 |
0,0028 |
0,0034 |
0,0040 |
0,008 |
0,008 |
0,009 |
0,011 |
0,006 | |
Of 0.05−0.10 |
0,0046 |
0,0055 |
0,0065 |
0,013 |
0,013 |
0,015 |
0,018 |
0,009 | |
0,10−0,20 |
0,0070 |
0,0084 |
0,010 |
0,020 |
0,020 |
0,024 |
0,028 |
0,014 | |
0,20−0,50 |
0,011 |
0,013 |
0,016 |
0,03 |
0,03 |
0,04 |
0,05 |
0,023 | |
0,50−1,0 |
0,015 |
0,018 |
0,022 |
0,04 |
0,04 |
0,05 |
0,06 |
0,03 | |
1,0−2,0 |
0,022 |
0,026 |
0,031 |
0,06 |
0,06 |
0,07 |
0,09 |
0,05 | |
2,0−5,0 |
0,036 |
0,043 |
0,051 |
0,10 |
0,10 |
0,12 |
0,14 |
0,07 | |
Mo |
0,005−0,01 |
0,0008 |
0,0009 |
0,0011 |
0,0022 |
0,0022 |
0,0026 |
0,003 |
0.0016 inch |
0,01−0,02 |
0,0012 |
0,0014 |
0,0017 |
0,003 |
0,003 |
0,004 |
0,005 |
0,0024 | |
0,02−0,05 |
0,0020 |
0,0024 |
0,0028 |
0,006 |
0,006 |
0,007 |
0,008 |
0,004 | |
Of 0.05−0.10 |
0,0030 |
0,0036 |
0,0043 |
0,008 |
0,008 |
0,010 |
0,012 |
0,006 | |
0,10−0,20 |
0,0044 |
0,0053 |
0,0063 |
0,012 |
0,012 |
0,015 |
0,018 |
0,009 | |
0,20−0,50 |
0,0077 |
0,0092 |
0,011 |
0,022 |
0,022 |
0,026 |
0,03 |
0,016 | |
0,50−1,0 |
0,012 |
0,014 |
0,017 |
0,03 |
0,03 |
0,04 |
0,05 |
0,024 | |
1,0−2,0 |
0,017 |
0,020 |
0,024 |
0,05 |
0,05 |
0,06 |
0,07 |
0,04 | |
2,0−5,0 |
0,028 |
0,034 |
0,04 |
0,08 |
0,08 |
0,09 |
0,11 |
0,06 | |
V |
0,005−0,01 |
0,0008 |
0,0010 |
0,0012 |
0,0024 |
0,0024 |
0,0028 |
0,003 |
0,0017 |
0,01−0,02 |
0,0013 |
0,0015 |
0,0018 |
0,004 |
0,004 |
0,004 |
0,005 |
0,0026 | |
0,02−0,05 |
0,0022 |
0,0026 |
0,0031 |
0,006 |
0,006 |
0,007 |
0,009 |
0,005 | |
Of 0.05−0.10 |
0,0033 |
0,0039 |
0,0047 |
0,009 |
0,009 |
0,011 |
0,013 |
0,007 | |
0,10−0,20 |
0,0049 |
0,0059 |
0,007 |
0,014 |
0,014 |
0,016 |
0,020 |
0,010 | |
0,20−0,50 |
0,0084 |
0,0101 |
0,012 |
0,024 |
0,024 |
0,028 |
0,03 |
0,017 | |
0,50−1,0 |
0,013 |
0,015 |
0,018 |
0,04 |
0,04 |
0,04 |
0,05 |
0,026 | |
1,0−2,0 |
0,019 |
0,023 |
0,027 |
0,05 |
0,05 |
0,06 |
0,08 |
0,04 | |
2,0−5,0 |
0,032 |
0,039 |
0,046 |
0,09 |
0,09 |
0,11 |
0,13 |
0,07 | |
Cu |
0,01−0,02 |
0,0011 |
0,0013 |
0.0016 inch |
0,003 |
0,003 |
0,004 |
0,005 |
0,0023 |
0,02−0,05 |
0,0020 |
0,0024 |
0,0028 |
0,006 |
0,006 |
0,007 |
0,008 |
0,004 | |
Of 0.05−0.10 |
0,0031 |
0,0037 |
0,0044 |
0,008 |
0,009 |
0,010 |
0,012 |
0,006 | |
0,10−0,20 |
0,0047 |
0,0056 |
0,0067 |
0,013 |
0,013 |
0,016 |
0,019 |
0,010 | |
0,20−0,50 |
0,0084 |
0,0101 |
0,012 |
0,024 |
0,024 |
0,028 |
0,03 |
0,017 | |
0,50−1,0 |
0,013 |
0,015 |
0,018 |
0,04 |
0,04 |
0,04 |
0,05 |
0,026 | |
1,0−2,0 |
0,020 |
0,024 |
0,028 |
0,06 |
0,06 |
0,07 |
0,08 |
0,04 | |
2,0−5,0 |
0,036 |
0,043 |
0,051 |
0,10 |
0,10 |
0,12 |
0,14 |
0,07 | |
Al |
0,01−0,02 |
0,0015 |
0,0018 |
0,0022 |
0,004 |
0,004 |
0,005 |
0,006 |
0,003 |
0,02−0,05 |
0,0025 |
0,0029 |
0,0035 |
0,007 |
0,007 |
0,008 |
0,01 |
0,005 | |
Of 0.05−0.10 |
0,0052 |
0,0062 |
0,0074 |
0,015 |
0,015 |
0,017 |
0,021 |
0,011 | |
0,10−0,20 |
0,011 |
0,013 |
0,015 |
0,029 |
0,029 |
0,04 |
0,04 |
0,022 | |
0,20−0,50 |
0,015 |
0,018 |
0,022 |
0,04 |
0,04 |
0,05 |
0,06 |
0,032 | |
0,50−1,0 |
0,022 |
0,026 |
0,031 |
0,06 |
0,06 |
0,07 |
0,09 |
0,05 | |
1,0−2,0 |
0,032 |
0,038 |
0,045 |
0,09 |
0,09 |
0,11 |
0,13 |
0,06 | |
2,0−5,0 |
0,050 |
0,060 |
0,071 |
0,14 |
0,14 |
0,17 |
0,20 |
0,10 | |
Ti |
0,005−0,01 |
0,0008 |
0,0009 |
0,0011 |
0,0022 |
0,0022 |
0,0026 |
0,003 |
0.0016 inch |
0,01−0,02 |
0,0012 |
0,0014 |
0,0017 |
0,003 |
0,003 |
0,004 |
0,005 |
0,0024 | |
0,02−0,05 |
0,0020 |
0,0024 |
0,0029 |
0,006 |
0,006 |
0,007 |
0,008 |
0,004 | |
Of 0.05−0.10 |
0,0037 |
0,0045 |
0,0053 |
0,010 |
0,010 |
0,012 |
0,015 |
0,008 | |
0,10−0,20 |
0,0063 |
0,0076 |
0,009 |
0,018 |
0,018 |
0,021 |
0,025 |
0,013 | |
0,20−0,50 |
0,011 |
0,013 |
0,015 |
0,029 |
0,029 |
0,04 |
0,04 |
0,022 | |
0,50−1,0 |
0,014 |
0,017 |
0,02 |
0,04 |
0,04 |
0,05 |
0,06 |
0,029 | |
1,0−2,0 |
0,020 |
0,024 |
0,028 |
0,06 |
0,06 |
0,07 |
0,08 |
0,04 | |
2,0−5,0 |
0,032 |
0,038 |
0,045 |
0,09 |
0,09 |
0,11 |
0,13 |
0,07 | |
Co |
0,01−0,02 |
0,0009 |
0,0011 |
0,0013 |
0,0025 |
0,0025 |
0,003 |
0,003 |
0,0019 |
0,02−0,05 |
0,0015 |
0,0018 |
0,0022 |
0,004 |
0,004 |
0,005 |
0,006 |
0,003 | |
Of 0.05−0.10 |
0,0032 |
0,0039 |
0,0046 |
0,009 |
0,009 |
0,011 |
0,013 |
0,007 | |
0,10−0,20 |
0,0060 |
0,0071 |
0,0085 |
0,017 |
0,017 |
0,020 |
0,024 |
0,012 | |
0,20−0,50 |
0,0091 |
0,011 |
0,013 |
0,025 |
0,025 |
0,03 |
0,04 |
0,019 | |
0,50−1,0 |
0,013 |
0,016 |
0,019 |
0,04 |
0,04 |
0,05 |
0,05 |
0,027 | |
1,0−2,0 |
0,019 |
0,023 |
0,027 |
0,05 |
0,06 |
0,06 |
0,08 |
0,04 | |
2,0−5,0 |
0,030 |
0,036 |
0,043 |
0,08 |
0,08 |
0,10 |
0,12 |
0,06 | |
Zr |
0,01−0,02 |
0,0015 |
0,0018 |
0,0021 |
0,004 |
0,004 |
0,005 |
0,006 |
0,0030 |
0,02−0,05 |
0,0027 |
0,0032 |
0,0038 |
0,007 |
0,008 |
0,009 |
0,011 |
0,006 | |
Of 0.05−0.10 |
0,0041 |
0,0049 |
0,0058 |
0,011 |
0,011 |
0,014 |
0,016 |
0,008 | |
0,10−0,20 |
0,0064 |
0,0076 |
0,0091 |
0,018 |
0,018 |
0,021 |
0,025 |
0,013 | |
0,20−0,50 |
0,011 |
0,013 |
0,016 |
0,03 |
0,03 |
0,04 |
0,05 |
0,023 | |
Note — Standards of accuracy consistent with the requirements of GOST R 54569−2011. |
Appendix B (recommended). Recommended analytical lines
Appendix B
(recommended)
Table B. 1
The designated element |
The analytical line, nm |
Si |
288,16; 251,61; 259,37 |
Mn |
293,3; 257,61 |
Ni |
231,60; 221,65; 232,0 |
Cr |
267,71; 205,55; 206,15 |
Ti |
334,9; 336,12; 337,28 |
V |
292,4; 309,31; 310,23 |
Mo |
202,03; 203,84; 204,59 |
W |
207,91; 218,94 |
Cu |
324,75; 327,4; 224,7 |
Al |
394,40; 396,1; 309,27 |
Zr |
343,82; 339,20; 257,14 |
Co |
228,62; 238,89 |
Nb |
316,34; 319,50; 309,42 |
Annex b (recommended). Recommended dilution and the corresponding concentration of the calibration solutions
The App
(recommended)
Table B. 1
The contents of the element, wt. % | Capacity flask — 100 cm |
Capacity flask — 200 cm | ||||
The concentration |
The volume gradua- |
The volume gradua- |
The concentration |
The volume gradua- |
The volume gradua- | |
0,005 |
0,05 |
- |
0,5 |
0,025 |
- |
0,5 |
0,01 |
0,10 |
- |
1,0 |
0,05 |
- |
1,0 |
0,10 |
Of 1.00 |
- |
10,0 |
0,50 |
- |
10,0 |
0,50 |
5,00 |
0,5 |
- |
2,50 |
0,5 |
- |
Of 1.00 |
10,0 |
1,0 |
- |
5,00 |
1,0 |
- |
5,00 |
50,0 |
5,0 |
- |
25,0 |
5,0 |
- |
10,0 |
- |
- |
- |
50,0 |
- |
- |
30,0 |
- |
- |
- |
150 |
30,0 |
- |
Appendix d (reference). Correction factors, expressed in the content of the element (mass fraction, %), equivalent to 1 mass fraction in percent of the interfering object
Appendix D
(reference)
Table G. 1
The designated element (analysis), nm |
Interfering elements (spectral line), nm |
The correction factor, mass fraction, % |
Al (396,15) |
Ce (396,14) |
0,006 |
Mo (396,15) |
0,018 | |
Zr (396,16) |
0,005 | |
Cr (286,26) |
Ti (286,23) |
0,008 |
Fe (286,25) |
0,0002 | |
V (286,24) |
0,001 | |
Cu (327,39) |
Ti (327,40) |
0,0008 |
Ce (327,39) |
0,0004 | |
Ni (231,60) |
Co (231,62) |
0,008 |
Al (231,75) |
0,002 | |
Mo (202,03) |
Al (202,28) |
0,0005 |
Si (288,16) |
Al (288,16) |
0,008 |
Example — In the analyzed solution sample steel was found to be 0.54 mass fraction (%) Ni and 4.88 mass fraction (%) Al. The definition of Ni was carried out at the analytical line 231,60 nm. The final result of the content of Ni in the alloy: 0,54−0,002х4,88=0,53 mass fraction in percent.